290
Views
0
CrossRef citations to date
0
Altmetric
Articles

A noise-robust Koopman spectral analysis of an intermittent dynamics method for complex systems: a case study in pathophysiological processes of obstructive sleep apnea

, , &

References

  • Abarbanel, H. D., Brown, R., Sidorowich, J. J., & Tsimring, L. S. (1993). The analysis of observed chaotic data in physical systems. Reviews of Modern Physics, 65(4), 1331–1392. https://doi.org/10.1103/RevModPhys.65.1331
  • Atri, R., & Mohebbi, M. (2015). Obstructive sleep apnea detection using spectrum and bispectrum analysis of single-lead ECG signal. Physiological Measurement, 36(9), 1963–1980. https://doi.org/10.1088/0967-3334/36/9/1963
  • Bessaih, H., Hausenblas, E., & Razafimandimby, P. A. (2015). Strong solutions to stochastic hydrodynamical systems with multiplicative noise of jump type. Nonlinear Differential Equations and Applications NoDEA, 22(6), 1661–1697. https://doi.org/10.1007/s00030-015-0339-9
  • Brunton, S. L., Brunton, B. W., Proctor, J. L., Kaiser, E., & Kutz, J. N. (2017). Chaos as an intermittently forced linear system. Nature Communications, 8(1), 1–9. https://doi.org/10.1038/s41467-017-00030-8
  • Brunton, S. L., Brunton, B. W., Proctor, J. L., & Kutz, J. N. (2016a). Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLoS One, 11(2), e0150171.
  • Brunton, S. L., & Kutz, J. N. (2019). Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press.
  • Brunton, S. L., Proctor, J. L., & Kutz, J. N. (2016b). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences, 113(15), 3932–3937. https://doi.org/10.1073/pnas.1517384113
  • Byun, S., Kim, A. Y., Jang, E. H., Kim, S., Choi, K. W., Yu, H. Y., & Jeon, H. J. (2019). Detection of major depressive disorder from linear and nonlinear heart rate variability features during mental task protocol. Computers in Biology and Medicine, 112, 103381.
  • Champion, K. P., Brunton, S. L., & Kutz, J. N. (2019). Discovery of nonlinear multiscale systems: Sampling strategies and embeddings. SIAM Journal on Applied Dynamical Systems, 18(1), 312–333. https://doi.org/10.1137/18M1188227
  • Chang, Y.-M., Huang, Y.-T., Chen, I.-L., Yang, C.-L., Leu, S.-C., Su, H.-L., Kao, J.-L., Tsai, S.-C., Jhen, R.-N., & Shiao, C.-C. (2020). Heart rate variability as an independent predictor for 8-year mortality among chronic hemodialysis patients. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-57792-3
  • Contoyiannis, Y., Diakonos, F., & Malakis, A. (2002). Intermittent dynamics of critical fluctuations. Physical Review Letters, 89(3), 035701.
  • Donnelly, L. F., Shott, S. R., LaRose, C. R., Chini, B. A., & Amin, R. S. (2004). Causes of persistent obstructive sleep apnea despite previous tonsillectomy and adenoidectomy in children with down syndrome as depicted on static and dynamic cine MRI. AJR. American Journal of Roentgenology, 183(1), 175–181.
  • Donoho, D. L., & Gavish, M. (2013). The optimal hard threshold for singular values is 4/√ 3 (Vol. 4). Citeseer.
  • Giannakis, D. (2019). Data-driven spectral decomposition and forecasting of ergodic dynamical systems. Applied and Computational Harmonic Analysis, 47(2), 338–396. https://doi.org/10.1016/j.acha.2017.09.001
  • Giannakis, D., & Majda, A. J. (2012). Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability. Proceedings of the National Academy of Sciences, 109(7), 2222–2227. https://doi.org/10.1073/pnas.1118984109
  • Grebogi, C., Ott, E., Romeiras, F., & Yorke, J. A. (1987). Critical exponents for crisis-induced intermittency. Physical Review A, 36(11), 5365–5380. https://doi.org/10.1103/PhysRevA.36.5365
  • Guckenheimer, J., & Holmes, P. (2013). Nonlinear oscillations, dynamical systems, and bifurcations of vector fields (Vol. 42). Springer Science & Business Media.
  • Hossen, A. (2019). A new simple efficient classification technique for severity of sleep apnea with mathematical model and interpretation. Technology and Health Care, 27(4), 389–406. https://doi.org/10.3233/THC-181541
  • Hramov, A. E., Koronovskii, A. A., & Kurovskaya, M. K. (2014). Intermittent behavior near the synchronization threshold in system with fluctuating control parameter. EPL (Europhysics Letters), 105(5), 50003. https://doi.org/10.1209/0295-5075/105/50003
  • Huynh, P. K., Setty, A., Phan, H., & Le, T. Q. (2021). Probabilistic domain-knowledge modeling of disorder pathogenesis for dynamics forecasting of acute onset. Artificial Intelligence in Medicine, 115, 102056.
  • Juang, J.-N., & Pappa, R. S. (1985). An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics, 8(5), 620–627. https://doi.org/10.2514/3.20031
  • Kantz, H., & Schreiber, T. (2004). Nonlinear time series analysis (Vol. 7). Cambridge University Press.
  • Koopman, B. O. (1931). Hamiltonian systems and transformation in Hilbert space. Proceedings of the National Academy of Sciences of the United States of America, 17(5), 315–318. https://doi.org/10.1073/pnas.17.5.315
  • Kunisaki, K. M., Greer, N., Khalil, W., Koffel, E., Koeller, E., MacDonald, R., & Wilt, T. J. (2018). Provider types and outcomes in obstructive sleep apnea case finding and treatment: A systematic review. Annals of Internal Medicine, 168(3), 195–202.
  • Le, T. Q., & Bukkapatnam, S. T. (2016). Nonlinear dynamics forecasting of obstructive sleep apnea onsets. PLoS One, 11(11), e0164406.
  • Le, T. Q., Cheng, C., Sangasoongsong, A., Wongdhamma, W., & Bukkapatnam, S. T. (2013). Wireless wearable multisensory suite and real-time prediction of obstructive sleep apnea episodes. IEEE Journal of Translational Engineering in Health and Medicine, 1, 2700109.
  • Lilly, J. M. (2017). Element analysis: A wavelet-based method for analysing time-localized events in noisy time series. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2200), 20160776. https://doi.org/10.1098/rspa.2016.0776
  • Majda, A. J., & Harlim, J. (2013). Physics constrained nonlinear regression models for time series. Nonlinearity, 26(1), 201–217. https://doi.org/10.1088/0951-7715/26/1/201
  • Majda, A. J., & Lee, Y. (2014). Conceptual dynamical models for turbulence. Proceedings of the National Academy of Sciences, 111(18), 6548–6553. https://doi.org/10.1073/pnas.1404914111
  • Mendez, M. O., Bianchi, A. M., Matteucci, M., Cerutti, S., & Penzel, T. (2009). Sleep apnea screening by autoregressive models from a single ECG lead. IEEE Transactions on Bio-Medical Engineering, 56(12), 2838–2850.
  • Mezić, I. (2005). Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dynamics, 41(1–3), 309–325. https://doi.org/10.1007/s11071-005-2824-x
  • Nussbaumer, H. J. (1981). "The fast Fourier transform": Fast Fourier Transform and Convolution Algorithms. Springer.
  • Park, C., Worth, R. M., & Rubchinsky, L. L. (2010). Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. Journal of Neurophysiology, 103(5), 2707–2716.
  • Pecchia, L., Castaldo, R., Montesinos, L., & Melillo, P. (2018). Are ultra-short heart rate variability features good surrogates of short-term ones? State-of-the-art review and recommendations. Healthcare Technology Letters, 5(3), 94–100.
  • Penzel, T., Moody, G. B., Mark, R. G., Goldberger, A. L., & Peter, J. H. (2000). The apnea-ECG database. Paper Presented at the Computers in Cardiology 2000, 27(Cat. 00CH37163).
  • Rozenbaum, E. B., Ganeshan, S., & Galitski, V. (2017). Lyapunov exponent and out-of-time-ordered correlator’s growth rate in a chaotic system. Physical Review Letters, 118(8), 086801. https://doi.org/10.1103/PhysRevLett.118.086801
  • Shelhamer, M. (2007). Nonlinear dynamics in physiology: A state-space approach. World Scientific.
  • Sugihara, G., May, R., Ye, H., Hsieh, C.-h., Deyle, E., Fogarty, M., & Munch, S. (2012). Detecting causality in complex ecosystems. Science (New York, N.Y.), 338(6106), 496–500.
  • Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical systems and turbulence, Warwick 1980 (pp. 366–381). Springer.
  • Tu, J. H. (2013). Dynamic mode decomposition: Theory and applications. Princeton University.
  • Urtnasan, E., Park, J.-U., Joo, E.-Y., & Lee, K.-J. (2018). Automated detection of obstructive sleep apnea events from a single-lead electrocardiogram using a convolutional neural network. Journal of Medical Systems, 42(6), 1–8. https://doi.org/10.1007/s10916-018-0963-0
  • Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 58(1-4), 95–126.
  • Vollmer, M. (2019). HRVTool–an open-source matlab toolbox for analyzing heart rate variability. Paper Presented at the 2019 Computing in Cardiology (CinC).
  • Wang, S.-Y., Aziz, T. Z., Stein, J. F., & Liu, X. (2005). Time–frequency analysis of transient neuromuscular events: Dynamic changes in activity of the subthalamic nucleus and forearm muscles related to the intermittent resting tremor. Journal of Neuroscience Methods, 145(1–2), 151–158. https://doi.org/10.1016/j.jneumeth.2004.12.009
  • Williams, M. O., Kevrekidis, I. G., & Rowley, C. W. (2015). A data–driven approximation of the Koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear Science, 25(6), 1307–1346. https://doi.org/10.1007/s00332-015-9258-5
  • Wu, X., Zheng, Y., Chu, C.-H., & He, Z. (2020). Extracting deep features from short ECG signals for early atrial fibrillation detection. Artificial Intelligence in Medicine, 109, 101896.
  • Ye, H., Beamish, R. J., Glaser, S. M., Grant, S. C. H., Hsieh, C.-H., Richards, L. J., Schnute, J. T., & Sugihara, G. (2015). Equation-free mechanistic ecosystem forecasting using empirical dynamic modeling. Proceedings of the National Academy of Sciences of the United States of America, 112(13), E1569–E1576. https://doi.org/10.1073/pnas.1417063112
  • Zaslavsky, G. M., & Zaslavskij, G. M. (2005). Hamiltonian chaos and fractional dynamics. Oxford University Press on Demand.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.