70
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identifying heart disease risk factors from electronic health records using an ensemble of deep learning method

, ORCID Icon & ORCID Icon

References

  • Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint, arXiv:1607.06450.
  • CDC. (2022). Heart disease facts. Retrieved Feb 2023, from https://www.cdc.gov/heartdisease/facts.htm
  • Chang, N.-W., Dai, H.-J., Jonnagaddala, J., Chen, C.-W., Tsai, R. T.-H., & Hsu, W.-L. (2015). A context-aware approach for progression tracking of medical concepts in electronic medical records. Journal of Biomedical Informatics, 58(S), S150–S157. https://doi.org/10.1016/j.jbi.2015.09.013
  • Chen, T., Cullen, R., & Godwin, M. (2015). Hidden Markov model using Dirichlet process for de-identification. Journal of Biomedical Informatics, 58(S), S60–S66. https://doi.org/10.1016/j.jbi.2015.09.004
  • Chokwijitkul, T., Nguyen, A., Hassanzadeh, H., & Perez, S. (2018). Identifying risk factors for heart disease in electronic medical records: A deep learning approach. Proceedings of the BioNLP 2018 Workshop, July 19 (p. 18–27), Melbourne, Australia. https://doi.org/10.18653/v1/W18-2303
  • Cormack, J., Nath, C., Milward, D., Raja, K., & Jonnalagadda, S. R. (2015). Agile text mining for the 2014 i2b2/UTHealth cardiac risk factors challenge. Journal of Biomedical Informatics, 58(S), S120–S127. https://doi.org/10.1016/j.jbi.2015.06.030
  • Cui, L., Xie, X., Shen, Z., Lu, R., & Wang, H. (2018). Prediction of the healthcare resource utilization using multi-output regression models. IISE Transactions on Healthcare Systems Engineering, 8(4), 291–302. https://doi.org/10.1080/24725579.2018.1512537
  • Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. Proceedings of NAACL-HLT 2019 (pp. 4171–4186). Minneapolis, Minnesota.
  • Dokken, B. B. (2008). The pathophysiology of cardiovascular disease and diabetes: Beyond blood pressure and lipids. Diabetes Spectrum, 21(3), 160–165. https://doi.org/10.2337/diaspect.21.3.160
  • Erekat, A., Servis, G., Madathil, S. C., & Khasawneh, M. T. (2020). Efficient operating room planning using an ensemble learning approach to predict surgery cancellations. IISE Transactions on Healthcare Systems Engineering, 10(1), 18–32. https://doi.org/10.1080/24725579.2019.1641576
  • Fries, J. A. (2016). Brundlefly at SemEval-2016 task 12: Recurrent neural networks vs. joint inference for clinical temporal information extraction. arXiv preprint, arXiv:1606.01433.
  • Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and neural networks architectures. Neural Computation, 7(2), 219–269. https://doi.org/10.1162/neco.1995.7.2.219
  • Gonzalez-Hernandez, G., Sarker, A., O’Connor, K., & Savova, G. (2017). Capturing the patients perspective: A review of advances in natural language processing of health-related text. Yearbook of Medical Informatics, 26(1), 214–227. https://doi.org/10.15265/IY-2017-029
  • Guergana, K., Savova, E. T., Finan, S., Castine, M., Miller, T., Medvedeva, O., Harris, D., Hochheiser, H., Lin, C., Chavan, G., & Jacobson, R. S. (2017). DeepPhe: A natural language processing system for extracting cancer phenotypes from clinical records. Cancer Research, 77(21), e115–e118. https://doi.org/10.1158/0008-5472.CAN-17-0615
  • Heidenreich, P. A., Trogdon, J. G., Khavjou, O. A., Butler, J., Dracup, K., Ezekowitz, M. D., Finkelstein, E. A., Hong, Y., Johnston, S. C., Khera, A., Lloyd-Jones, D. M., Nelson, S. A., Nichol, G., Orenstein, D., Wilson, P. W., & Woo, Y. J., Council on Cardiovascular Surgery and Anesthesia, and Interdisciplinary Council on Quality of Care and Outcomes Research. (2011). Forecasting the future of cardiovascular disease in the United States: A policy statement from the American Heart Association. Circulation, 123(8), 933–944. https://doi.org/10.1161/CIR.0b013e31820a55f5
  • Hendrycks, D., & Gimpel, K. (2016). Bridging nonlinearities and stochastic regularizers with gaussian error linear units. arXiv:1606.08415.
  • Iovine, A., Narducci, F., & Semeraro, G. (2020). Conversational recommender systems and natural language: A study through the ConveRSE framework. Decision Support Systems, 131, 113250. https://doi.org/10.1016/j.dss.2020.113250
  • Jagannatha, A. N., & Yu, H. (2016). Structured prediction models for RNN based sequence labeling in clinical text. Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 856–865).
  • Karystianis, G., Dehghan, A., Kovacevic, A., Keane, J. A., & Nenadic, G. (2015). Using local lexicalized rules to identify heart disease risk factors in clinical notes. Journal of Biomedical Informatics, 58(S), S183–S188. https://doi.org/10.1016/j.jbi.2015.06.013
  • Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proceedings of the 18th International Conference on Machine Learning (pp. 282–289).
  • Liang, X., Wu, L., Li, J., Wang, Y., Meng, Q., Qin, T., Chen, W., Zhang, M., & Liu, T. (2021). R-Drop: Regularized dropout for neural networks. arXiv:2106.14448.
  • Luo, L., & Wang, Y. (2019). EmotionX-HSU: Adopting pre-trained BERT for emotion classification. arXiv:1907.09669.
  • Luo, L., Wang, Y., & Liu, H. (2022). COVID-19 personal health mention detection from tweets using dual convolutional neural network. Expert Systems With Applications, 200, 117139.
  • Meystre, S. M., Savova, G. K., Kipper-Schuler, K. C., & Hurdle, J. F. (2008). Extracting information from textual documents in the electronic health record: A review of recent research. IMIA Yearbook of Medical Informatics, 35(128), 128–144.
  • Ou, Y., & Patrick, J. (2014). Automatic population of structured reports from narrative pathology reports. Proceedings of the Seventh Australasian Workshop on Health Informatics and Knowledge Management (Vol. 153, pp. 41–50). HIKM ’14. Darlinghurst, Australia, Australia: Australian Computer Society, Inc.
  • Pathak, P., Patel, P., Panchal, V., Soni, S., Dani, K., & Choudhary, N. (2015). ezDI: A supervised NLP system for clinical narrative analysis. Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015), June 4–5 (pp. 412–416). Denver, Colorado. https://doi.org/10.18653/v1/S15-2071
  • Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representation. Proceedings of the Conference on Empirical Methods in Natural Language Processing Doha, Qatar.
  • Roberts, K., Shooshan, S. E., Rodriguez, L., Abhyankar, S., Kilicoglu, H., & Demner-Fushman, D. (2015). The role of fine-grained annotations in supervised recognition of risk factors for heart disease from EHRs. Journal of Biomedical Informatics, 58(S), S111–S119. https://doi.org/10.1016/j.jbi.2015.06.010
  • Shin, J., Wu, S., Wang, F., De Sa, C., Zhang, C., & Ré, C. (2015). Incremental knowledge base construction using DeepDive. Proceedings of the VLDB Endowment. International Conference on Very Large Data Bases, 8(11), 1310–1321. https://doi.org/10.14778/2809974.2809991
  • Shivade, C., Malewadkar, P., Fosler-Lussier, E., & Lai, A. M. (2015). Comparison of UMLS terminologies to identify risk of heart disease using clinical notes. Journal of Biomedical Informatics, 58(S), S103–S110. https://doi.org/10.1016/j.jbi.2015.08.025
  • Stubbs, A., Kotfila, C., Xu, H., & Uzuner, Ö. (2015). Identifying risk factors for heart disease over time: Overview of 2014 i2b2/UTHealth shared task Track 2. Journal of Biomedical Informatics, 58(S), S67–S77. https://doi.org/10.1016/j.jbi.2015.07.001
  • Torii, M., Fan, J.-W., Yang, W.-L., Lee, T., Wiley, M. T., Zisook, D. S., & Huang, Y. (2015). Risk factor detection for heart disease by applying text analytics in electronic medical records. Journal of Biomedical Informatics, 58(S), S164–S170. https://doi.org/10.1016/j.jbi.2015.08.011
  • Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. (2017). Attention is all you need. arXiv:1706.03762.
  • Wang, Y., & Li, X. (2021). Mining product reviews for needs-based product configurator design: A transfer learning-based approach. IEEE Transactions on Industrial Informatics, 17(9), 6192–6199. https://doi.org/10.1109/TII.2020.3043315
  • Wang, Y., Li, X., & Mo, D. (2021). Knowledge-empowered multi-task learning to address the semantic gap between customer needs and design specifications. IEEE Transactions on Industrial Informatics, 17(12), 8397–8405. https://doi.org/10.1109/TII.2021.3067141
  • Wang, Y., Li, X., & Tsung, F. (2020). Configuration-based smart customization service: A multitask learning approach. IEEE Transactions on Automation Science and Engineering, 17(4), 2038–2047. https://doi.org/10.1109/TASE.2020.2986774
  • WHO (World Health Organization). Health topics: Risk factors. Retrieved February 2023, from www.who.int/data/gho/data/themes/topics/topic-details/GHO/ncd-risk-factors
  • Wu, X., Sui, Z., Chu, C.-H., & Huang, G. (2022). Automatic atrial fibrillation detection from short ECG signals: A hybrid deep learning approach. IISE Transactions on Healthcare Systems Engineering, 12(1), 1–19. https://doi.org/10.1080/24725579.2021.1919249
  • Yang, H., & Garibaldi, J. M. (2015). A hybrid model for automatic identification of risk factors for heart disease. Journal of Biomedical Informatics, 58(S), S171–S182. https://doi.org/10.1016/j.jbi.2015.09.006
  • Zhang, Y., Wang, J., Tang, B., Wu, Y., Jian, M., Chen, Y., & Xu, H. (2014). UTH_CCB: A report for SemEval 2014 – task 7 analysis of clinical text. Proceedings of the 8th International Workshop on Semantic Evaluation (SemEval 2014), August 23–24 (pp. 802–806). Dublin, Ireland. https://doi.org/10.3115/v1/S14-2142
  • Zhao, X., Yan, H., Hu, Z., & Du, D. (2022). Deep spatio-temporal sparse decomposition for trend prediction and anomaly detection in cardiac electrical conduction. IISE Transactions on Healthcare Systems Engineering, 12(2), 150–164. https://doi.org/10.1080/24725579.2021.1982081

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.