668
Views
16
CrossRef citations to date
0
Altmetric
Position Paper

The use of exoskeletons in the occupational context for primary, secondary, and tertiary prevention of work-related musculoskeletal complaints

, , , , , , , , , , , , , , , & show all
Pages 132-144 | Received 23 Oct 2020, Accepted 27 Oct 2020, Published online: 30 Nov 2020

References

  • Abdoli-Eramaki, M., Agnew, M. J., & Stevenson, J. M. (2006). An on-body personal lift augmentation device (PLAD) reduces EMG amplitude of erector spinae during lifting tasks. Clinical Biomechanics (Bristol, Avon), 21(5), 456–465. https://doi.org/10.1016/j.clinbiomech.2005.12.021
  • Abdoli-Eramaki, M., & Stevenson, J. M. (2008). The effect of on-body lift assistive device on the lumbar 3D dynamic moments and EMG during asymmetric freestyle lifting. Clinical Biomechanics (Bristol, Avon), 23(3), 372–380. https://doi.org/10.1016/j.clinbiomech.2007.10.012
  • Alabdulkarim, S., & Nussbaum, M. A. (2019). Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overhead drilling task. Applied Ergonomics, 74, 55–66. https://doi.org/10.1016/j.apergo.2018.08.004
  • Amandels, S., Het Eyndt, H. O., Daenen, L., & Hermans, V. (2018). Introduction and testing of a passive exoskeleton in an industrial working environment. 20th Congress of the International Ergonomics Association (IEA), Italy.
  • AWMF. (2012). Das AWMF-Regelwerk Leitlinien. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) – Ständige Kommission Leitlinien. Retrieved January 17, 2018, from www.awmf.org/leitlinien/awmf-regelwerk/ll-entwicklung/awmf-regelwerk-01-planung-und-organisation/po-interessenkonflikte/interessenskonflikte.html
  • Baltrusch, S. J., van Dieen, J. H., van Bennekom, C. A. M., & Houdijk, H. (2018). The effect of a passive trunk exoskeleton on functional performance in healthy individuals. Applied Ergonomics, 72, 94–106. https://doi.org/10.1016/j.apergo.2018.04.007
  • Bergmann, A., Bolm-Audorff, U., Krone, D., Seidler, A., Liebers, F., Haerting, J., Freiberg, A., & Unverzagt, S. (2017). Occupational strain as a risk for hip osteoarthritis. Deutsches Arzteblatt International, 114(35–36), 581–588.https://doi.org/10.3238/arztebl.2017.0581
  • BMJV, & BfJ. (1996). Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit (Arbeitsschutzgesetz - ArbSchG). Bundesministerium der Justiz und für Verbraucherschutz & Bundesamt für Justiz. https://www.gesetze-im-internet.de/arbschg/ArbSchG.pdf
  • BMJV, & BfJ. (2011). Gesetz über die Bereitstellung von Produkten auf dem Markt (Produktsicherheitsgesetz - ProdSG). Bundesministerium der Justiz und für Verbraucherschutz & Bundesamt für Justiz. https://www.gesetze-im-internet.de/prodsg_2011/ProdSG.pdf
  • Bosch, T., van Eck, J., Knitel, K., & de Looze, M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics, 54, 212–217. https://doi.org/10.1016/j.apergo.2015.12.003
  • Bundesanstalt für Arbeitsmedizin und Arbeitsschutz e.V. (2017). Was ist eine Gefährdungsbeurteilung? Retrieved March 10, 2020, from https://www.baua.de/DE/Themen/Arbeitsgestaltung-im-Betrieb/Gefaehrdungsbeurteilung/Grundlagenwissen/Was-ist-eine-Gefaehrdungsbeurteilung/Was-ist-eine-Gefaehrdungsbeurteilung_node.html
  • Burton, K., & Kendall, N. (2014). Musculoskeletal disorders. BMJ (Clinical Research ed.), 348, g1076. https://doi.org/10.1136/bmj.g1076
  • Cruciger, O., Schildhauer, T. A., Meindl, R. C., Tegenthoff, M., Schwenkreis, P., Citak, M., & Aach, M. (2016). Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: A case study (.). Disabil Rehabil Assist Technol, 11(6), 529–534. https://doi.org/10.3109/17483107.2014.981875
  • da Costa, B. R., & Vieira, E. R. (2010). Risk factors for work-related musculoskeletal disorders: A systematic review of recent longitudinal studies. American Journal of Industrial Medicine, 53(3), 285–323. https://doi.org/10.1002/ajim.20750
  • de Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., & O'Sullivan, L. W. (2016). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59(5), 671–681. https://doi.org/10.1080/00140139.2015.1081988
  • DGUV. (2019). STOP principle. Retrieved October 8, 2020, from file:///Q:/AS/APL/Literatur/Externe_Publikationen/Workplace_design/STOP/Nano-Portal%20DGUV%20STOP%20principle.htm
  • Edgar, T. W., & Manz, D. O. (2017). Chapter 3 - Starting your research. In: Research methods for cyber security (pp. 63–92), Elsevier Inc. https://doi.org/10.1016/B978-0-12-805349-2.00003-0
  • Eichenhorst, W., & Buhlmann, F. (2015). IZA Standpunkte Nr. 77: Die Zukunft der Arbeit und der Wandel der Arbeitswelt. Wirtschaftspolitische Blätter, 62(1), 131–148.
  • Epstein, S., Sparer, E. H., Tran, B. N., Ruan, Q. Z., Dennerlein, J. T., Singhal, D., & Lee, B. T. (2018). Prevalence of work-related musculoskeletal disorders among surgeons and interventionalists: A systematic review and meta-analysis. JAMA Surgery, 153(2), e174947 https://doi.org/10.1001/jamasurg.2017.4947
  • EU OSHA. (2018). Manage dangerous substances. file:///C:/Users/asluget1/AppData/Local/Temp/57/campaign-guide-1.pdf
  • Fischer, L. (2018). Wir setzen auf Prävention [Interview]. Deutsche Gesetzliche Unfallversicherung (DGUV).
  • Frost, D. M., Abdoli, E. M., & Stevenson, J. M. (2009). PLAD (personal lift assistive device) stiffness affects the lumbar flexion/extension moment and the posterior chain EMG during symmetrical lifting tasks. Journal of Electromyography and Kinesiology, 19(6), e403–e412. https://doi.org/10.1016/j.jelekin.2008.12.002
  • Godwin, A. A., Stevenson, J. M., Agnew, M. J., Twiddy, A. L., Abdoli-Eramaki, M., & Lotz, C. A. (2009). Testing the efficacy of an ergonomic lifting aid at diminishing muscular fatigue in women over a prolonged period of lifting. International Journal of Industrial Ergonomics, 39(1), 121–126. https://doi.org/10.1016/j.ergon.2008.05.008
  • Graham, R. B., Agnew, M. J., & Stevenson, J. M. (2009). Effectiveness of an on-body lifting aid at reducing low back physical demands during an automotive assembly task: Assessment of EMG response and user acceptability. Applied Ergonomics, 40(5), 936–942. https://doi.org/10.1016/j.apergo.2009.01.006
  • Grobe, T., Steinmann, S., & Gerr, J. (2018). Gesundheitsreport 2018 - Arbeitsunfähigkeiten.
  • Hariton, E., & Locascio, J. J. (2018). Randomised controlled trials - The gold standard for effectiveness research. BJOG: An International Journal of Obstetrics & Gynaecology, 125(13), 1716–1716. https://doi.org/10.1111/1471-0528.15199
  • Hensel, R., & Keil, M. (2018). Subjektive Evaluation industrieller Exoskelette im Rahmen von Feldstudien an ausgewählten Arbeitsplätzen. Zeitschrift Für Arbeitswissenschaft, 72(4), 252–263. https://doi.org/10.1007/s41449-018-0122-y
  • Huysamen, K., de Looze, M., Bosch, T., Ortiz, J., Toxiri, S., & O'Sullivan, L. W. (2018). Assessment of an active industrial exoskeleton to aid dynamic lifting and lowering manual handling tasks. Applied Ergonomics, 68, 125–131. https://doi.org/10.1016/j.apergo.2017.11.004
  • IFA. (2019). Gefährungsbeurteilung für Exoskelette. Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung (IFA). Retrieved October 8, 2020, from https://www.dguv.de/medien/ifa/de/pra/ergonomie/gefaehrdungsbeurteilung_exoskelette.pdf
  • Jezukaitis, P., & Kapur, D. (2011). Management of occupation-related musculoskeletal disorders. Best Practice & Research: Clinical Rheumatology, 25(1), 117–129. https://doi.org/10.1016/j.berh.2011.01.010
  • Kadam, P., & Bhalerao, S. (2010). Sample size calculation. International Journal of Ayurveda Research, 1(1), 55–57. https://doi.org/10.4103/0974-7788.59946
  • Kim, S., Nussbaum, M. A., Mokhlespour Esfahani, M. I., Alemi, M. M., Alabdulkarim, S., & Rashedi, E. (2018a). Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part I - "Expected" effects on discomfort, shoulder muscle activity, and work task performance. Applied Ergonomics, 70, 315–322. https://doi.org/10.1016/j.apergo.2018.02.025
  • Kim, S., Nussbaum, M. A., Mokhlespour Esfahani, M. I., Alemi, M. M., Jia, B., & Rashedi, E. (2018b). Assessing the influence of a passive, upper extremity exoskeletal vest for tasks requiring arm elevation: Part II - "Unexpected" effects on shoulder motion, balance, and spine loading. Applied Ergonomics, 70, 323–330. https://doi.org/10.1016/j.apergo.2018.02.024
  • Kim, W. S., Lee, H. D., Lim, D. H., Han, C. S., & Han, J. S. (2013). Development of a lower extremity exoskeleton system for walking assistance while load carrying [Paper presentation]. 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Sydney, Australia. https://doi.org/10.1142/9789814525534_0008[]
  • Koopman, A. S., Kingma, I., Faber, G. S., de Looze, M. P., & van Dieën, J. H. (2019). Effects of a passive exoskeleton on the mechanical loading of the low back in static holding tasks. Journal of Biomechanics, 83, 97–103. https://doi.org/10.1016/j.jbiomech.2018.11.033
  • Liu, S., Hemming, D., Luo, R. B., Reynolds, J., Delong, J. C., Sandler, B. J., Jacobsen, G. R., & Horgan, S. (2018). Solving the surgeon ergonomic crisis with surgical exosuit. Surgical Endoscopy, 32(1), 236–244. https://doi.org/10.1007/s00464-017-5667-x
  • Lotz, C. A., Agnew, M. J., Godwin, A. A., & Stevenson, J. M. (2009). The effect of an on-body personal lift assist device (PLAD) on fatigue during a repetitive lifting task. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 19(2), 331–340. https://doi.org/10.1016/j.jelekin.2007.08.006
  • Luger, T., Cobb, T. J., Seibt, R., Rieger, M. A., & Steinhilber, B. (2019a). Subjective evaluation of a passive lower-limb industrial exoskeleton used during simulated assembly. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 175–184. https://doi.org/10.1080/24725838.2018.1560376
  • Luger, T., Seibt, R., Cobb, T. J., Rieger, M. A., & Steinhilber, B. (2019b). Influence of a passive lower-limb exoskeleton during simulated industrial work tasks on physical load, upper body posture, postural control and discomfort. Applied Ergonomics, 80, 152–160. https://doi.org/10.1016/j.apergo.2019.05.018
  • Marinov, B. (2019). Exoskeleton Report. https://exoskeletonreport.com/product-category/exoskeleton-catalog/industrial/
  • McMillan, S. S., King, M., & Tully, M. P. (2016). How to use the nominal group and Delphi techniques. International Journal of Clinical Pharmacy, 38(3), 655–662.https://doi.org/10.1007/s11096-016-0257-x
  • Miura, K., Kadone, H., Koda, M., Abe, T., Endo, H., Murakami, H., Doita, M., Kumagai, H., Nagashima, K., Fujii, K., Noguchi, H., Funayama, T., Kawamoto, H., Sankai, Y., & Yamazaki, M. (2018a). The hybrid assisted limb (HAL) for Care Support, a motion assisting robot providing exoskeletal lumbar support, can potentially reduce lumbar load in repetitive snow-shoveling movements. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 49, 83–86. https://doi.org/10.1016/j.jocn.2017.11.020
  • Miura, K., Kadone, H., Koda, M., Abe, T., Kumagai, H., Nagashima, K., Mataki, K., Fujii, K., Noguchi, H., Funayama, T., Kawamoto, H., Sankai, Y., & Yamazaki, M. (2018b). The hybrid assistive limb (HAL) for Care Support successfully reduced lumbar load in repetitive lifting movements. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 53, 276–279. https://doi.org/10.1016/j.jocn.2018.04.057
  • Moyon, A., Poirson, E., & Petiot, J. F. (2018). Experimental study of the physical impact of a passive exoskeleton on manual sanding operations. Procedia CIRP, 70, 284–289. https://doi.org/10.1016/j.procir.2018.04.028
  • Muramatsu, Y., Umehara, H., & Kobayashi, H. (2013). Improvement and quantitative performance estimation of the back support muscle suit. 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC'13), Japan.
  • Picchiotti, M. T., Weston, E. B., Knapik, G. G., Dufour, J. S., & Marras, W. S. (2019). Impact of two postural assist exoskeletons on biomechanical loading of the lumbar spine. Applied Ergonomics, 75, 1–7. https://doi.org/10.1016/j.apergo.2018.09.006
  • Sadler, E. M., Graham, R. B., & Stevenson, J. M. (2011). The personal lift-assist device and lifting technique: A principal component analysis. Ergonomics, 54(4), 392–402. https://doi.org/10.1080/00140139.2011.556259
  • Schick, R. (2018). Mechanische Assistenzsysteme: Einsatz von Exoskeletten an gewerblichen Arbeitsplätze.. DGUV Forum: Fachzeitschrift für Prävention, Rehablilitation und Entschädigung, 1–2, 8–11.
  • Seidler, A., Bergmann, A., Jager, M., Ellegast, R., Ditchen, D., Elsner, G., Grifka, J., Haerting, J., Hofmann, F., Linhardt, O., Luttmann, A., Michaelis, M., Petereit-Haack, G., Schumann, B., & Bolm-Audorff, U. (2009). Cumulative occupational lumbar load and lumbar disc disease-results of a German multi-center case-control study (EPILIFT). BMC Musculoskeletal Disorders, 10, 48https://doi.org/https://doi.org/10.1186/1471-2474-10-48
  • Spada, S., Ghibaudo, L., Gilotta, S., Gastaldi, L., & Cavatorta, M. P. (2017). Investigation into the applicability of a passive upper-limb exoskeleton in automotive industry. Procedia Manufacturing, 11, 1255–1262. https://doi.org/10.1016/j.promfg.2017.07.252
  • Steinhilber, B., Seibt, R., Rieger, M. A., & Luger, T. (2020). Postural control when using an industrial lower limb exoskeleton: Impact of reaching for a working tool and external perturbation. Human Factors. https://doi.org/10.1177/0018720820957466
  • Sylla, N., Bonnet, V., Colledani, F., & Fraisse, P. (2014). Ergonomic contribution of ABLE exoskeleton in automotive industry. International Journal of Industrial Ergonomics, 44(4), 475–481. https://doi.org/10.1016/j.ergon.2014.03.008
  • Theurel, J., Desbrosses, K., Roux, T., & Savescu, A. (2018). Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Applied Ergonomics, 67, 211–217. https://doi.org/10.1016/j.apergo.2017.10.008
  • Toxiri, S., Koopman, A. S., Lazzaroni, M., Ortiz, J., Power, V., de Looze, M. P., O'Sullivan, L., & Caldwell, D. G. (2018). Rationale, implementation and evaluation of assistive strategies for an active back-support exoskeleton. Frontiers in Robotics and AI, 5, 53.
  • Toxiri, S., Ortiz, J., Masood, J., Fernández, J., Mateos, L. A., & Caldwell, D. G. (2015). A wearable device for reducing spinal loads during lifting tasks: Biomechanics and design concepts [Paper presentation]. 2015 International Conference on Robotics and Biomimetics (ROBIO), Zhuhai, China.
  • Ulrey, B. L., & Fathallah, F. A. (2013). Effect of a personal weight transfer device on muscle activities and joint flexions in the stooped posture. Journal of Electromyography and Kinesiology, 23(1), 195–205. https://doi.org/10.1016/j.jelekin.2012.08.014
  • van Dijk, W., van der Kooij, H., & Hekman, E. (2011). A passive exoskeleton with artificial tendons design and experimental evaluation [Paper presentation]. 12th International Conference on Rehabilitation Robotics (ICORR), Zurich, Switzerland.
  • von Glinski, A., Yilmaz, E., Mrotzek, S., Marek, E., Jettkant, B., Brinkemper, A., Fisahn, C., Schildhauer, T. A., & Geßmann, J. (2019). Effectiveness of an on-body lifting aid (HAL® for care support) to reduce lower back muscle activity during repetitive lifting tasks. Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 63, 249–255. https://doi.org/10.1016/j.jocn.2019.01.038
  • Weston, E. B., Alizadeh, M., Knapik, G. G., Wang, X., & Marras, W. S. (2018). Biomechanical evaluation of exoskeleton use on loading of the lumbar spine. Applied Ergonomics, 68, 101–108. https://doi.org/10.1016/j.apergo.2017.11.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.