Publication Cover
Canadian Journal of Respiratory, Critical Care, and Sleep Medicine
Revue canadienne des soins respiratoires et critiques et de la médecine du sommeil
Volume 7, 2023 - Issue 4
988
Views
0
CrossRef citations to date
0
Altmetric
Clinical Respiratory Review

Bronchiectasis: From targets to therapies

Pages 206-212 | Received 22 Mar 2023, Accepted 07 Jul 2023, Published online: 27 Jul 2023

References

  • Cole PJ. Inflammation: a two-edged Sword–the model of bronchiectasis. Eur J Respir Dis Suppl. 1986;147:6–15.
  • O’Donnell AE. Bronchiectasis – a Clinical Review. N Engl J Med. 2022;387:533–545.
  • Chandrasekaran R, Mac Aogain M, Chalmers JD, Elborn SJ, Chotirmall SH. Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis. BMC Pulm Med. 2018;18(1):83. doi:10.1186/s12890-018-0638-0.
  • Flume PA, Chalmers JD, Olivier KN. Advances in bronchiectasis: endotyping, genetics, microbiome, and disease heterogeneity. Lancet. 2018;392(10150):880–890. doi:10.1016/S0140-6736(18)31767-7.
  • Juliusson G, Gudmundsson G. Diagnostic imaging in adult non-cystic fibrosis bronchiectasis. Breathe. 2019;15(3):190–197. doi:10.1183/20734735.0009-2019.
  • Hata A, Hino T, Putman RK, et al. Traction Bronchiectasis/Bronchiolectasis on CT scans in relationship to clinical outcomes and mortality: the COPDGene study. Radiology. 2022;304(3):694–701. doi:10.1148/radiol.212584.
  • Chalmers JD, Polverino E, Crichton ML, et al. Bronchiectasis in Europe: data on disease characteristics from the European Bronchiectasis registry (EMBARC). Lancet Respir Med. 2023;11(7):637–649. doi:10.1016/S2213-2600(23)00093-0.
  • Turino GM, Lourenco RV, McCracken GH. Role of connective tissues in large pulmonary airways. J Appl Physiol. 1968;25(6):645–653. doi:10.1152/jappl.1968.25.6.645.
  • Fahy JV, Schuster A, Ueki I, Boushey HA, Nadel JA. Mucus hypersecretion in bronchiectasis. The role of neutrophil proteases. Am Rev Respir Dis. 1992;146(6):1430–1433. doi:10.1164/ajrccm/146.6.1430.
  • Belaaouaj A, Kim KS, Shapiro SD. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science. 2000;289(5482):1185–1188. doi:10.1126/science.289.5482.1185.
  • Belaaouaj A, McCarthy R, Baumann M, et al. Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nat Med. 1998;4(5):615–618. doi:10.1038/nm0598-615.
  • Shoemark A, Cant E, Carreto L, et al. A point-of-care neutrophil elastase activity assay identifies bronchiectasis severity, airway infection and risk of exacerbation. Eur Respir J. 2019;53(6):1900303. doi:10.1183/13993003.00303-2019.
  • Sly PD, Gangell CL, Chen L, et al. Risk factors for bronchiectasis in children with cystic fibrosis. N Engl J Med. 2013;368(21):1963–1970. doi:10.1056/NEJMoa1301725.
  • Voynow JA, Shinbashi M. Neutrophil Elastase and chronic lung disease. Biomolecules. 2021;11(8):1065. doi:10.3390/biom11081065.
  • Mariano CA, Sattari S, Ramirez GO, Eskandari M. Effects of tissue degradation by collagenase and elastase on the biaxial mechanics of porcine airways. Respir Res. 2023;24(1):105. doi:10.1186/s12931-023-02376-8.
  • Tosi MF, Zakem H, Berger M. Neutrophil elastase cleaves C3bi on opsonized pseudomonas as well as CR1 on neutrophils to create a functionally important opsonin receptor mismatch. J Clin Invest. 1990;86(1):300–308. doi:10.1172/JCI114699.
  • Berger M, Sorensen RU, Tosi MF, Dearborn DG, Doring G. Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis. J Clin Invest. 1989;84(4):1302–1313. doi:10.1172/JCI114298.
  • McElvaney NG, Hubbard RC, Birrer P, et al. Aerosol alpha 1-antitrypsin treatment for cystic fibrosis. Lancet. 1991;337(8738):392–394. doi:10.1016/0140-6736(91)91167-s.
  • Voynow JA, Young LR, Wang Y, Horger T, Rose MC, Fischer BM. Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells. Am J Physiol. 1999;276(5):L835–43. doi:10.1152/ajplung.1999.276.5.L835.
  • Park JA, He F, Martin LD, Li Y, Chorley BN, Adler KB. Human neutrophil elastase induces hypersecretion of mucin from well-differentiated human bronchial epithelial cells in vitro via a protein kinase C{delta}-mediated mechanism. Am J Pathol. 2005;167(3):651–661. doi:10.1016/s0002-9440(10)62040-8.
  • Nakamura H, Yoshimura K, McElvaney NG, Crystal RG. Neutrophil elastase in respiratory epithelial lining fluid of individuals with cystic fibrosis induces interleukin-8 gene expression in a human bronchial epithelial cell line. J Clin Invest. 1992;89(5):1478–1484. doi:10.1172/JCI115738.
  • Vandivier RW, Fadok VA, Hoffmann PR, et al. Elastase-mediated phosphatidylserine receptor cleavage impairs apoptotic cell clearance in cystic fibrosis and bronchiectasis. J Clin Invest. 2002;109(5):661–670. doi:10.1172/JCI0213572.
  • Weldon S, McNally P, McElvaney NG, et al. Decreased levels of secretory leucoprotease inhibitor in the Pseudomonas-infected cystic fibrosis lung are due to neutrophil elastase degradation. J Immunol. 2009;183(12):8148–8156. doi:10.4049/jimmunol.0901716.
  • Keating D, Marigowda G, Burr L, et al. VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379(17):1612–1620. doi:10.1056/NEJMoa1807120.
  • Middleton PG, Mall MA, Dřevínek P, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del Allele. N Engl J Med. 2019;381(19):1809–1819. doi:10.1056/NEJMoa1908639.
  • Cantin AM, Hanrahan JW, Bilodeau G, et al. Cystic fibrosis transmembrane conductance regulator function is suppressed in cigarette smokers. Am J Respir Crit Care Med. 2006;173(10):1139–1144. doi:10.1164/rccm.200508-1330OC.
  • Dransfield MT, Wilhelm AM, Flanagan B, et al. Acquired cystic fibrosis transmembrane conductance regulator dysfunction in the lower airways in COPD. Chest. 2013;144(2):498–506. doi:10.1378/chest.13-0274.
  • Le Gars M, Descamps D, Roussel D, et al. Neutrophil elastase degrades cystic fibrosis transmembrane conductance regulator via calpains and disables channel function in vitro and in vivo. Am J Respir Crit Care Med. 2013;187(2):170–179. doi:10.1164/rccm.201205-0875OC.
  • Trinh NT, Bilodeau C, Maille E, et al. Deleterious impact of Pseudomonas aeruginosa on cystic fibrosis transmembrane conductance regulator function and rescue in airway epithelial cells. Eur Respir J. 2015;45(6):1590–1602. doi:10.1183/09031936.00076214.
  • O’Donnell AE, Barker AF, Ilowite JS, Fick RB. Treatment of idiopathic bronchiectasis with aerosolized recombinant human DNase I. rhDNase Study Group. Chest. 1998;113(5):1329–1334. doi:10.1378/chest.113.5.1329.
  • Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic Fibrosis Inhaled Tobramycin Study Group. N Engl J Med. 1999;340(1):23–30. doi:10.1056/NEJM199901073400104.
  • Elborn JS, Blasi F, Haworth CS, et al. Bronchiectasis and inhaled tobramycin: a literature review. Respir Med. 2022;192:106728. doi:10.1016/j.rmed.2021.106728.
  • Munoz G, de Gracia J, Buxo M, Alvarez A, Vendrell M. Long-term benefits of airway clearance in bronchiectasis: a randomised placebo-controlled trial. Eur Respir J. 2018;51(1):1701926. doi:10.1183/13993003.01926-2017.
  • Roy MG, Livraghi-Butrico A, Fletcher AA, et al. Muc5b is required for airway defence. Nature. 2014;505(7483):412–416. doi:10.1038/nature12807.
  • Cross CE, Halliwell B, Allen A. Antioxidant protection: a function of tracheobronchial and gastrointestinal mucus. Lancet. 1984;1(8390):1328–1330. doi:10.1016/s0140-6736(84)91822-1.
  • Nadziejko C, Finkelstein I. Inhibition of neutrophil elastase by mucus glycoprotein. Am J Respir Cell Mol Biol. 1994;11(1):103–107. doi:10.1165/ajrcmb.11.1.7912511.
  • Cantin AM, Ouellet C, Cloutier A, McDonald PP. Airway mucins inhibit oxidative and non-oxidative bacterial killing by human neutrophils. Front Pharmacol. 2020;11:554353. doi:10.3389/fphar.2020.554353.
  • Batson BD, Zorn BT, Radicioni G, et al. Cystic fibrosis airway mucus hyperconcentration produces a vicious cycle of Mucin, pathogen, and inflammatory interactions that promotes disease persistence. Am J Respir Cell Mol Biol. 2022;67(2):253–265. doi:10.1165/rcmb.2021-0359OC.
  • Kesimer M, Ford AA, Ceppe A, et al. Airway Mucin concentration as a marker of chronic bronchitis. N Engl J Med. 2017;377(10):911–922. doi:10.1056/NEJMoa1701632.
  • Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev. 2022;102(4):1757–1836. doi:10.1152/physrev.00004.2021.
  • Ramsey KA, Chen ACH, Radicioni G, et al. Airway mucus hyperconcentration in non-cystic fibrosis bronchiectasis. Am J Respir Crit Care Med. 2020;201(6):661–670. doi:10.1164/rccm.201906-1219OC.
  • Volpato M, Vialaret J, Hirtz C, et al. Rheology predicts sputum eosinophilia in patients with muco-obstructive lung diseases. Biochem Biophys Res Commun. 2022;622:64–71. doi:10.1016/j.bbrc.2022.07.025.
  • Mall MA, Danahay H, Boucher RC. Emerging concepts and therapies for mucoobstructive lung disease. Ann Am Thorac Soc. 2018;15(Suppl 3):S216–S226. doi:10.1513/AnnalsATS.201806-368AW.
  • Ehre C, Rushton ZL, Wang B, et al. An improved inhaled mucolytic to treat airway muco-obstructive diseases. Am J Respir Crit Care Med. 2019;199(2):171–180. doi:10.1164/rccm.201802-0245OC.
  • Gupta S, Pattanaik D, Krishnaswamy G. Common variable immune deficiency and associated complications. Chest. 2019;156(3):579–593. doi:10.1016/j.chest.2019.05.009.
  • Vonarburg C, Loetscher M, Spycher MO, et al. Topical application of nebulized human IgG, IgA and IgAM in the lungs of rats and non-human primates. Respir Res. 2019;20(1):99. doi:10.1186/s12931-019-1057-3.
  • Adkison AM, Raptis SZ, Kelley DG, Pham CT. Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest. 2002;109(3):363–371. doi:10.1172/JCI0213462.
  • Palmer R, Maenpaa J, Jauhiainen A, et al. Dipeptidyl peptidase 1 inhibitor AZD7986 induces a sustained, exposure-dependent reduction in neutrophil elastase activity in healthy subjects. Clin Pharmacol Ther. 2018;104(6):1155–1164. doi:10.1002/cpt.1053.
  • Chalmers JD, Haworth CS, Metersky ML, et al. Phase 2 trial of the DPP-1 inhibitor brensocatib in bronchiectasis. N Engl J Med. 2020;383(22):2127–2137. doi:10.1056/NEJMoa2021713.
  • Liu W, Yan M, Liu Y, McLeish KR, Coleman WG, Jr., Rodgers GP. Olfactomedin 4 inhibits cathepsin C-mediated protease activities, thereby modulating neutrophil killing of Staphylococcus aureus and Escherichia coli in mice. J Immunol. 2012;189(5):2460–2467. doi:10.4049/jimmunol.1103179.
  • Kangelaris KN, Prakash A, Liu KD, et al. Increased expression of neutrophil-related genes in patients with early sepsis-induced ARDS. Am J Physiol Lung Cell Mol Physiol. 2015;308(11):L1102–13. doi:10.1152/ajplung.00380.2014.
  • Kangelaris KN, Clemens R, Fang X, et al. A neutrophil subset defined by intracellular olfactomedin 4 is associated with mortality in sepsis. Am J Physiol Lung Cell Mol Physiol. 2021;320(5):L892–L902. doi:10.1152/ajplung.00090.2020.
  • Keir HR, Shoemark A, Dicker AJ, et al. Neutrophil extracellular traps, disease severity, and antibiotic response in bronchiectasis: an international, observational, multicohort study. Lancet Respir Med. 2021;9(8):873–884. doi:10.1016/S2213-2600(20)30504-X.
  • Oriano M, Amati F, Gramegna A, et al. Protease-antiprotease imbalance in bronchiectasis. Int J Mol Sci. 2021;22:5996.
  • Finch S, McDonnell MJ, Abo-Leyah H, Aliberti S, Chalmers JD. A comprehensive analysis of the impact of Pseudomonas aeruginosa colonization on prognosis in adult bronchiectasis. Annals of the American Thoracic Society. 2015;12:1602–1611.
  • Polverino E, Goeminne PC, McDonnell MJ, et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur Respir J. 2017;50(3):1700629. doi:10.1183/13993003.00629-2017.
  • Pieters A, Bakker M, Hoek RAS, et al. The clinical impact of Pseudomonas aeruginosa eradication in bronchiectasis in a Dutch referral centre. Eur Respir J. 2019;53(4):1802081. doi:10.1183/13993003.02081-2018.
  • de la Rosa-Carrillo D, Suarez-Cuartin G, Golpe R, Maiz Carro L, Martinez-Garcia MA. Inhaled colistimethate sodium in the management of patients with bronchiectasis infected by Pseudomonas aeruginosa: A narrative review of current evidence. Infect Drug Resist. 2022;15:7271–7292. doi:10.2147/IDR.S318173.
  • Tamma PD, Souli M, Billard M, et al. Safety and microbiological activity of phage therapy in persons with cystic fibrosis colonized with Pseudomonas aeruginosa: study protocol for a phase 1b/2, multicenter, randomized, double-blind, placebo-controlled trial. Trials. 2022;23(1):1057. doi:10.1186/s13063-022-07047-5.
  • Kelly C, Chalmers JD, Crossingham I, et al. Macrolide antibiotics for bronchiectasis. Cochrane Database Syst Rev. 2018;3:CD012406.
  • Crichton ML, Shoemark A, Chalmers JD. The impact of the COVID-19 pandemic on exacerbations and symptoms in bronchiectasis: a prospective study. Am J Respir Crit Care Med. 2021;204(7):857–859. doi:10.1164/rccm.202105-1137LE.
  • Shapira T, Monreal IA, Dion SP, et al. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. Nature. 2022;605(7909):340–348. doi:10.1038/s41586-022-04661-w.
  • Lai M, Pifferi M, Bush A, et al. Gene editing of DNAH11 restores normal cilia motility in primary ciliary dyskinesia. J Med Genet. 2016;53(4):242–249. doi:10.1136/jmedgenet-2015-103539.