Publication Cover
Structural Heart
The Journal of the Heart Team
Volume 2, 2018 - Issue 4
184
Views
1
CrossRef citations to date
0
Altmetric
Review Articles

State of the Art Review: Evolution and Ongoing Challenges of Left Ventricular Assist Device Therapy

, MD, , MD, , MD, PhD & , MD, MSC
Pages 262-273 | Received 15 Feb 2018, Accepted 18 Apr 2018, Published online: 09 May 2018

References

  • Writing GroupMembers, Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38–360. doi:10.1161/CIR.0000000000000350
  • Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385:812–824. doi:10.1016/S0140-6736(14)61889-4
  • Mancini D, Colombo PC. Left ventricular assist devices: a rapidly evolving alternative to transplant. J Am Coll Cardiol. 2015;65:2542–2555. doi:10.1016/j.jacc.2015.04.039
  • Liotta D, Hall CW, Henly WS, Cooley DA, Crawford ES, DeBakey ME. Prolonged assisted circulation during and after cardiac or aortic surgery. Prolonged partial left ventricular bypass by means of intracorporeal circulation. Am J Cardiol. 1963;12:399–405. doi:10.1016/0002-9149(63)90235-2
  • DeBakey ME. Left ventricular bypass pump for cardiac assistance. Clinical experience. Am J Cardiol. 1971;27:3–11. doi:10.1016/0002-9149(71)90076-2
  • Cooley DA, Liotta D, Hallman GL, Bloodwell RD, Leachman RD, Milam JD. Orthotopic cardiac prosthesis for two-staged cardiac replacement. Am J Cardiol. 1969;24:723–730. doi:10.1016/0002-9149(69)90460-3
  • Olsen DB, DeVries WC, Kolff J, Frazier OH, Rahimtoola SH. Indeterminate circulatory support with the artificial heart. Trans Am Soc Artif Intern Organs. 1982;28:652–655.
  • Frazier OH, Rose EA, McCarthy P, et al. Improved mortality and rehabilitation of transplant candidates treated with a long-term implantable left ventricular assist system. Ann Surg. 1995;222:327–336. discussion 336–338. doi:10.1097/00000658-199509000-00010
  • Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–1443. doi:10.1056/NEJMoa012175
  • Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–896. doi:10.1056/NEJMoa067758
  • Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–321. doi:10.1016/j.jacc.2009.03.055
  • Strueber M, O’Driscoll G, Jansz P, Khaghani A, Levy WC, Wieselthaler GM. Multicenter evaluation of an intrapericardial left ventricular assist system. J Am Coll Cardiol. 2011;57:1375–1382. doi:10.1016/j.jacc.2010.10.040
  • Aaronson KD, Slaughter MS, Miller LW, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125:3191–3200. doi:10.1161/CIRCULATIONAHA.111.058412
  • Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–2251. doi:10.1056/NEJMoa0909938
  • Jorde UP, Kushwaha SS, Tatooles AJ, et al. Results of the destination therapy post-Food and Drug Administration approval study with a continuous flow left ventricular assist device: a prospective study using the INTERMACS registry (interagency registry for mechanically assisted circulatory support). J Am Coll Cardiol. 2014;63:1751–1757. doi:10.1016/j.jacc.2014.01.053
  • Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376:451–460. doi:10.1056/NEJMoa1602954
  • Teuteberg JJ, Slaughter MS, Rogers JG, et al. The HVAD left ventricular assist device: risk factors for neurological events and risk mitigation strategies. JACC Heart Fail. 2015;3:818–828. doi:10.1016/j.jchf.2015.05.011
  • Milano CA, Rogers JG, Tatooles AJ, et al. The treatment of patients with advanced heart failure ineligible for cardiac transplantation with the HeartWare ventricular assist device: results of the ENDURANCE supplement trial. J Heart Lung Transplant. 2017;36:S10. doi:10.1016/j.healun.2017.01.012
  • Netuka I, Sood P, Pya Y, et al. Fully magnetically levitated left ventricular assist system for treating advanced HF: a multicenter study. J Am Coll Cardiol. 2015;66:2579–2589. doi:10.1016/j.jacc.2015.09.083
  • Krabatsch T, Netuka I, Schmitto JD, et al. Heartmate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure −1 year results from the CE Mark trial. J Cardiothorac Surg. 2017;12:23. doi:10.1186/s13019-017-0587-3
  • Mehra MR, Naka Y, Uriel N, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376:440–450. doi:10.1056/NEJMoa1610426
  • Mehra MR, Goldstein DJ, Uriel N, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. N Engl J Med. 2018;378:1386–1395. doi:10.1056/NEJMoa1800866
  • Hernandez RE, Singh SK, Hoang DT, et al. Present-day hospital readmissions after left ventricular assist device implantation: a large single-center study. Tex Heart Inst J. 2015;42:419–429. doi:10.14503/THIJ-14-4971
  • Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34:1495–1504. doi:10.1016/j.healun.2015.10.003
  • Boyle AJ, Jorde UP, Sun B, et al. Pre-operative risk factors of bleeding and stroke during left ventricular assist device support: an analysis of more than 900 heartmate II outpatients. J Am Coll Cardiol. 2014;63:880–888. doi:10.1016/j.jacc.2013.08.1656
  • Uriel N, Pak S-W, Jorde UP, et al. Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol. 2010;56:1207–1213. doi:10.1016/j.jacc.2010.05.016
  • Crow S, Chen D, Milano C, et al. Acquired von Willebrand syndrome in continuous-flow ventricular assist device recipients. Ann Thorac Surg. 2010;90:1263–1269. discussion 1269. doi:10.1016/j.athoracsur.2010.04.099
  • Rauch A, Legendre P, Christophe O, et al. Antibody-based prevention of von Willebrand factor degradation mediated by circulatory assist devices. Thromb Haemost. 2014;112:1014–1023. doi:10.1160/th14-02-0148
  • Demirozu ZT, Radovancevic R, Hochman LF,et al. Arteriovenous malformation and gastrointestinal bleeding in patients with the HEARTMATE II left ventricular assist device. J Heart Lung Transplant. 2011;30:849–853.
  • Patel SR, Madan S, Saeed O, et al. Association of nasal mucosal vascular alterations, gastrointestinal arteriovenous malformations, and bleeding in patients with continuous-flow left ventricular assist devices. JACC Heart Fail. 2016;4:962–970. doi:10.1016/j.jchf.2016.08.005
  • Tabit CE, Chen P, Kim GH, et al. Elevated angiopoietin-2 level in patients with continuous-flow left ventricular assist devices leads to altered angiogenesis and is associated with higher nonsurgical bleeding. Circulation. 2016;134:141–152. doi:10.1161/CIRCULATIONAHA.115.019692
  • Tabit CE, Coplan MJ, Chen P, Jeevanandam V, Uriel N, Liao JK. Tumor necrosis factor-alpha levels and non-surgical bleeding in continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2018;37:107–115. doi:10.1016/j.healun.2017.06.001
  • Houston BA, Schneider ALC, Vaishnav J, et al. Angiotensin II antagonism is associated with reduced risk for gastrointestinal bleeding caused by arteriovenous malformations in patients with left ventricular assist devices. J Heart Lung Transplant. 2017;36:380–385. doi:10.1016/j.healun.2016.12.016.
  • Feldman D, Pamboukian SV, Teuteberg JJ, et al. The 2013 international society for heart and lung transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–187. doi:10.1016/j.healun.2012.09.013.
  • Katz JN, Adamson RM, John R, et al. Safety of reduced anti-thrombotic strategies in HeartMate II patients: a one-year analysis of the US-TRACE study. J Heart Lung Transplant. 2015;34:1542–1548. doi:10.1016/j.healun.2015.06.018
  • Netuka I, Litzler P-Y, Berchtold-Herz M, et al. Outcomes in HeartMate II patients with no antiplatelet therapy: 2-year results from the European TRACE study. Ann Thorac Surg. 2017;103:1262–1268. doi:10.1016/j.athoracsur.2016.07.072
  • Loyaga-Rendon RY, Hashim T, Tallaj JA, et al. Octreotide in the management of recurrent gastrointestinal bleed in patients supported by continuous flow left ventricular assist devices. Asaio J. 2015;61:107–109. doi:10.1097/MAT.0000000000000143
  • Draper K, Kale P, Martin B, Kelly Cordero R, Ha R, Banerjee D. Thalidomide for treatment of gastrointestinal angiodysplasia in patients with left ventricular assist devices: case series and treatment protocol. J Heart Lung Transplant. 2015;34:132–134. doi:10.1016/j.healun.2014.09.013
  • Najjar SS, Slaughter MS, Pagani FD, et al. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant. 2014;33:23–34. doi:10.1016/j.healun.2013.12.001
  • Uriel N, Morrison KA, Garan AR, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol. 2012;60:1764–1775. doi:10.1016/j.jacc.2012.07.052
  • Jorde UP, Aaronson KD, Najjar SS, et al. Identification and management of pump thrombus in the HeartWare left ventricular assist device system: a novel approach using log file analysis. JACC Heart Fail. 2015;3:849–856. doi:10.1016/j.jchf.2015.06.015
  • Levin AP, Uriel N, Takayama H, et al. Device exchange in HeartMate II recipients: long-term outcomes and risk of thrombosis recurrence. Asaio J. 2015;61:144–149. doi:10.1097/MAT.0000000000000170
  • Goldstein DJ, John R, Salerno C, et al. Algorithm for the diagnosis and management of suspected pump thrombus. J Heart Lung Transplant. 2013;32:667–670. doi:10.1016/j.healun.2013.05.002
  • Badiye A, Hernandez GA, Chaparro S. Argatroban as novel therapy for suspected thrombosis in patients with continuous-flow left ventricle assist device and hemolysis. Asaio J. 2014;60:361–365. doi:10.1097/MAT.0000000000000067
  • Bitar A, Vijayakrishnan R, Lenneman A, et al. The use of eptifibatide alone or in combination with heparin or argatroban for suspected thrombosis in patients with left ventricular assist devices. Artif Organs. 2017. doi:10.1111/aor.2017.41.issue-12
  • Dang G, Epperla N, Muppidi V. Medical management of pump related thrombosis in patients with continuous flow left ventricular assist devices: a systematic review and meta-analysis. Asaio J. 2016.
  • Starling RC, Moazami N, Silvestry SC, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;63:370:33–40. doi:10.1056/NEJMoa1313385
  • Kirklin JK, Naftel DC, Kormos RL, et al. Interagency registry for mechanically assisted circulatory support (INTERMACS) analysis of pump thrombosis in the HeartMate II left ventricular assist device. J Heart Lung Transplant. 2014;33:12–22. doi:10.1016/j.healun.2013.11.001
  • Adatya S, Uriel N, Yarmohammadi H, et al. Anti-factor Xa and activated partial thromboplastin time measurements for heparin monitoring in mechanical circulatory support. JACC Heart Fail. 2015;3:314–322. doi:10.1016/j.jchf.2014.11.009
  • Nassif ME, Patel JS, Shuster JE, et al. Clinical outcomes with use of erythropoiesis stimulating agents in patients with the HeartMate II left ventricular assist device. JACC Heart Fail. 2015;3:146–153. doi:10.1016/j.jchf.2014.08.005
  • Fried J, Levin AP, Mody KM, et al. Prior hematologic conditions carry a high morbidity and mortality in patients supported with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2014;33:1119–1125. doi:10.1016/j.healun.2014.07.002
  • Maltais S, Kilic A, Nathan S, et al. PREVENTion of HeartMate II pump thrombosis through clinical management: the PREVENT multi-center study. J Heart Lung Transplant. 2017;36:1–12. doi:10.1016/j.healun.2016.10.001
  • Cho SM, Moazami N, Frontera JA. Stroke and intracranial hemorrhage in HeartMate II and HeartWare left ventricular assist devices: a systematic review. Neurocrit Care. 2017;27:17–25. doi:10.1007/s12028-017-0386-7
  • Frontera JA, Starling R, Cho SM. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transplant. 2016;36:673–683.
  • Mehra MR. The burden of haemocompatibility with left ventricular assist systems: a complex weave. Eur Heart J. 2017;19:16–24. doi:10.1093/eurheartj/ehx036.
  • Uriel N, Colombo PC, Cleveland JC, et al. Hemocompatibility-related outcomes in the MOMENTUM 3 trial at 6 months: a randomized controlled study of a fully magnetically levitated pump in advanced heart failure. Circulation. 2017;135:2003–2012. doi:10.1161/CIRCULATIONAHA.117.028303.
  • LaRue SJ, Raymer DS, Pierce BR, Nassif ME, Sparrow CT, Vader JM. Clinical outcomes associated with INTERMACS-defined right heart failure after left ventricular assist device implantation. J Heart Lung Transplant. 2017;36:475–477. doi:10.1016/j.healun.2016.12.017
  • Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34:1123–1130. doi:10.1016/j.healun.2015.06.015
  • Kukucka M, Stepanenko A, Potapov E, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30:64–69. doi:10.1016/j.healun.2010.09.006
  • Atluri P, Goldstone AB, Fairman AS, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96:857–863. discussion 863–4. doi:10.1016/j.athoracsur.2013.03.099
  • Raina A, Seetha Rammohan HR, Gertz ZM, Rame JE, Woo YJ, Kirkpatrick JN. Postoperative right ventricular failure after left ventricular assist device placement is predicted by preoperative echocardiographic structural, hemodynamic, and functional parameters. J Card Fail. 2016;19:16–24. doi:10.1016/j.cardfail.2012.11.001
  • Kato TS, Jiang J, Schulze PC, et al. Serial echocardiography using tissue doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC. Heart Failure. 2013;1:216–222. doi:10.1016/j.jchf.2013.02.005
  • Fitzpatrick JR 3rd, Frederick JR, Hsu VM, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27:1286–1292. doi:10.1016/j.healun.2008.09.006
  • Baumwol J, Macdonald PS, Keogh AM. Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant. 2011;30:888–895.
  • Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–1324. doi:10.1016/j.jtcvs.2009.11.020
  • Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22:110–116. doi:10.1016/j.cardfail.2015.10.019
  • Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2016;35:67–73. doi:10.1016/j.healun.2015.06.009
  • Drakos SG, Janicki L, Horne BD, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105:1030–1035. doi:10.1016/j.amjcard.2009.11.026
  • Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–2172. doi:10.1016/j.jacc.2008.03.009
  • Takeda K, Naka Y, Yang JA, et al. Timing of temporary right ventricular assist device insertion for severe right heart failure after left ventricular assist device implantation. Asaio J. 2013;59:564–569. doi:10.1097/MAT.0b013e3182a816d1
  • Rich JD, Gosev I, Patel CB, et al. The incidence, risk factors, and outcomes associated with late right-sided heart failure in patients supported with an axial-flow left ventricular assist device. J Heart Lung Transplant. 2012;36:50–58. doi:10.1016/j.healun.2016.08.010
  • Takeda K, Takayama H, Colombo PC, et al. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2015;34:1024–1032. doi:10.1016/j.healun.2015.03.011
  • Imamura T, Chung B, Nguyen A, et al. Decoupling between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure as a prognostic factor after continuous flow ventricular assist device implantation. Circ Heart Fail. 2017;10:p ii, e003882. doi:10.1161/CIRCHEARTFAILURE.117.003882
  • Garan AR, Yuzefpolskaya M, Colombo PC, et al. Ventricular arrhythmias and implantable cardioverter-defibrillator therapy in patients with continuous-flow left ventricular assist devices: need for primary prevention? J Am Coll Cardiol. 2013;61:2542–2550. doi:10.1016/j.jacc.2013.04.020
  • Raasch H, Jensen BC, Chang PP, et al. Epidemiology, management, and outcomes of sustained ventricular arrhythmias after continuous-flow left ventricular assist device implantation. Am Heart J. 2012;164:373–378. doi:10.1016/j.ahj.2012.06.018
  • Garan AR, Levin AP, Topkara V, et al. Early post-operative ventricular arrhythmias in patients with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34:1611–1616. doi:10.1016/j.healun.2015.05.018
  • Sims DB, Rosner G, Uriel N, González-Costello J, Ehlert FA, Jorde UP. Twelve hours of sustained ventricular fibrillation supported by a continuous-flow left ventricular assist device. Pacing Clin Electrophysiol. 2012;35:e144–148. doi:10.1111/j.1540-8159.2011.03159.x
  • Garan AR, Iyer V, Whang W, et al. Catheter ablation for ventricular tachyarrhythmias in patients supported by continuous-flow left ventricular assist devices. Asaio J. 2014;60:311–316. doi:10.1097/MAT.0000000000000061
  • Clerkin KJ, Topkara VK, Mancini DM, et al. The role of implantable cardioverter defibrillators in patients bridged to transplantation with a continuous-flow left ventricular assist device: a propensity score matched analysis. J Heart Lung Transplant. 2017;36:633–639. doi:10.1016/j.healun.2016.11.008
  • Jorde UP, Uriel N, Nahumi N, et al. Prevalence, significance, and management of aortic insufficiency in continuous flow left ventricular assist device recipients. Circ Heart Fail. 2014;7:310–319. doi:10.1161/CIRCHEARTFAILURE.113.000878
  • Grinstein J, Kruse E, Sayer G, et al. Accurate quantification methods for aortic insufficiency severity in patients with LVAD: role of diastolic flow acceleration and systolic-to-diastolic peak velocity ratio of outflow cannula. JACC Cardiovasc Imaging. 2016;9:641–651. doi:10.1016/j.jcmg.2015.06.020
  • Cowger JA, Aaronson KD, Romano MA, Haft J, Pagani FD. Consequences of aortic insufficiency during long-term axial continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2014;33:1233–1240. doi:10.1016/j.healun.2014.06.008
  • Gasparovic H, Kopjar T, Saeed D, et al. De novo aortic regurgitation after continuous-flow left ventricular assist device implantation. Ann Thorac Surg. . doi:10.1016/j.athoracsur.2017.01.114
  • Grinstein J, Kruse E, Sayer G, et al. Novel echocardiographic parameters of aortic insufficiency in continuous-flow left ventricular assist devices and clinical outcome. J Heart Lung Transplant. 2016;35:976–985. doi:10.1016/j.healun.2016.05.009
  • Sayer G, Sarswat N, Kim GH, et al. The hemodynamic effects of aortic insufficiency in patients supported with continuous-flow left ventricular assist devices. J Card Fail. 2017;23:545–551. doi:10.1016/j.cardfail.2017.04.012
  • Rao V, Slater JP, Edwards NM, Naka Y, Oz MC. Surgical management of valvular disease in patients requiring left ventricular assist device support. Ann Thorac Surg. 2001;71:1448–1453. doi:10.1016/S0003-4975(01)02479-1
  • Park SJ, Liao KK, Segurola R, Madhu KP, Miller LW. Management of aortic insufficiency in patients with left ventricular assist devices: a simple coaptation stitch method (Park’s stitch). J Thorac Cardiovasc Surg. 2004;127:264–266. doi:10.1016/S0022-5223(03)01301-1
  • Cohn WE, Frazier OH. The sandwich plug technique: simple, effective, and rapid closure of a mechanical aortic valve prosthesis at left ventricular assist device implantation. J Thorac Cardiovasc Surg. 2011;142:455–457. doi:10.1016/j.jtcvs.2010.11.003
  • Atkins BZ, Hashmi ZA, Ganapathi AM, et al. Surgical correction of aortic valve insufficiency after left ventricular assist device implantation. J Thorac Cardiovasc Surg. 2013;146:1247–1252. doi:10.1016/j.jtcvs.2013.05.019
  • Retzer EM, Sayer GT, Fedson SE, et al. Predictors of survival following trans-catheter aortic valve closure for left ventricular assist device associated aortic insufficiency. Catheter Cardiovasc Interv. 2016;87:971–979. doi:10.1002/ccd.26280
  • Phan K, Haswell JM, Xu J, et al. Percutaneous transcatheter interventions for aortic insufficiency in continuous-flow left ventricular assist device patients: a systematic review and meta-analysis. Asaio J. 2017;63:117–122. doi:10.1097/MAT.0000000000000447
  • Nienaber JJ, Kusne S, Riaz T, et al. Clinical manifestations and management of left ventricular assist device-associated infections. Clin Infect Dis. 2013;57:1438–1448. doi:10.1093/cid/cit536
  • Goldstein DJ, Naftel D, Holman W, et al. Continuous-flow devices and percutaneous site infections: clinical outcomes. J Heart Lung Transplant. 2012;31:1151–1157. doi:10.1016/j.healun.2012.05.004
  • Cagliostro B, Levin AP, Fried J, et al. Continuous-flow left ventricular assist devices and usefulness of a standardized strategy to reduce drive-line infections. J Heart Lung Transplant. 2016;35:108–114. doi:10.1016/j.healun.2015.06.010
  • Estep JD, Starling RC, Horstmanshof DA, et al. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: results from the ROADMAP study. J Am Coll Cardiol. 2015;66:1747–1761. doi:10.1016/j.jacc.2015.07.075
  • Starling RC, Estep JD, Horstmanshof DA. Risk assessment and comparative effectiveness of left ventricular assist device and medical management in ambulatory heart failure patients: the ROADMAP study 2-year results. JACC: Heart Fail 2017;5:518–527.
  • Hall JL, Fermin DR, Birks EJ, et al. Clinical, molecular, and genomic changes in response to a left ventricular assist device. J Am Coll Cardiol. 2011;57:641–652. doi:10.1016/j.jacc.2010.11.010
  • Drakos SG, Pagani FD, Lundberg MS, Baldwin JT. Advancing the science of myocardial recovery with mechanical circulatory support: a working group of the national, heart, lung, and blood institute. JACC Basic Transl Sci. 2017;2:335–340. doi:10.1016/j.jacbts.2016.12.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.