2,923
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Bioleaching of manganese from mining waste residues using Acinetobacter sp.

&
Pages 77-83 | Received 10 Nov 2016, Accepted 21 Feb 2017, Published online: 13 Jun 2017

References

  • Abhilash, Ghosh, A., & Pandey, B.D. (2015). Bioleaching of low grade granitic chalcopyrite ore by hyperthermophiles: Elucidation of kinetics-mechanism. Metallurgical Research and Technology, 112 (506), 1–14.
  • Acharya, C., Kar, R.N., & Sukla, L.B. (2003). Studies on reaction mechanism of bioleaching of manganese ore. Minerals Engineering, 16, 1027–1030.10.1016/S0892-6875(03)00239-5
  • Chen, P., Yan, L., Leng, F., Nan, W., Yue, X., Zheng, Y., … Li, H. (2011). Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulphur as the sole and mixed energy sources. Bioresource Technology, 102, 3260–3267.10.1016/j.biortech.2010.11.059
  • Das, A.P., Sukla, L.B., Pradhan, N., & Nayak, S. (2011). Manganese biomining: A review. Bioresource Technology, 102, 7381–7387.10.1016/j.biortech.2011.05.018
  • Das, A.P., Ghosh, S., Mohanty, S., & Sukla, L.B. (2015a). Advances in manganese pollution and its bioremediation In A. Singh, R. Kuhad, C. Ward, & P. Owen (Eds.), Environmental Microbial Biotechnology Soil biology (p. 45). Berlin: Springer.
  • Das, A.P., Ghosh, S., Mohanty, S., & Sukla, L.B. (2015b). Consequences of manganese compounds: A review. Toxicol. Environ. Chem, 96, 981–997.
  • Das, A.P., Pradhan, N., & Sukla, L.B. (2012). Microbial recovery of manganese using Staphylococcus epidermidis. International Journal of Nonferrous Metallurgy, 1, 9–12.10.4236/ijnm.2012.12002
  • Das, A.P., Swain, S., Panda, S., Pradhan, N., & Sukla, L.B. (2012). Reductive acid leaching of low grade manganese ores. Geomaterials, 2, 70–72.10.4236/gm.2012.24011
  • Das, A.P., & Mishra, S. (2010). Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain. Journal of carcinogenesis, 9, 6.
  • Dick, G.J., Justin, W., Terry, J., & Bradley, M.T. (2008). Direct identification of a bacterial manganese (II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species. Applied and Environmental Microbiology, 74, 1527–1534.10.1128/AEM.01240-07
  • Felicioa, A.P., Garcia, O., Bertolinia, C., Ottobonib, L.M.M., & Novoa, M.T.M. (2003). The effects of copper ions on the synthesis of periplasmic and membrane proteins in Acidithiobacillus ferrooxidans as analyzed by SDS-PAGE and 2D-PAGE. Hydrometallurgy, 71, 165–171.10.1016/S0304-386X(03)00153-1
  • Ghosh, S., Mohanty, S., Akcil, A., Sukla, L.B., & Das, A.P. (2016). A greener approach for resource recycling: Manganese bioleaching. Chemosphere, 154, 628–639.10.1016/j.chemosphere.2016.04.028
  • Ghosh, S., Mohanty, S., Nayak, S., Sukla, L.B., & Das, A.P. (2015). Molecular identification of indigenous manganese solubilising bacterial biodiversity from manganese mining deposits. Journal of Basic Microbiology, 55, 1–9.
  • Ghosh, S., & Das, A.P. (2015). Modified titanium oxide (TiO2) nano-composites and its array of applications: A review. Toxicological & Environmental Chemistry, 97, 491–514.10.1080/02772248.2015.1052204
  • Li, Y., Zuo, W., Li, Y., & Wang, X. (2012). Cloning of multicopper oxidase gene from Ochrobactrum sp. 531 and characterization of its alkaline laccase activity towards phenolic substrates. Advances in Biological Chemistry, 2, 248–255.10.4236/abc.2012.23031
  • Mohanty, S., Ghosh, S., Nayak, S., & Das, A.P. (2016a). Bioleaching of manganese by Aspergillums oryzae isolated from mining deposits. Chemosphere, 172, 302–309.
  • Mohanty, S., Ghosh, S., Nayak, S., & Das, A.P. (2016b). Isolation, identification and screening of manganese solubilizing fungi from low grade manganese ore deposits. Geomicrobiology Journal, 34, 309–316. doi:10.1080/01490451.2016.1189016
  • Mohapatra, S., Bohidar, S., Pradhan, N., Kar, R.N., & Sukla, L.B. (2007). Microbial extraction of nickel from Sukinda chromite overburden by Acidithiobacillus ferrooxidans and Aspergillus strains. Hydrometallurgy, 85(1), 1–8.10.1016/j.hydromet.2006.07.001
  • Prakash, J.W., Marimuthu, J., Antonisamy, & Jeeva, S. (2011) Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of Tropical Biomedicine, 1, S170–S173.10.1016/S2221-1691(11)60149-4
  • Parikh, S.J., & Chorover, J. (2005). FTIR spectroscopic study of biogenic Mn-Oxide formation by Pseudomonas putida GB-1. Geomicrobiology Journal, 22, 207–218.10.1080/01490450590947724
  • Rawlings, D.E. (2005). Characteristics and adaptability of iron and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories, 4, 13.10.1186/1475-2859-4-13
  • Sanket, A.S., Ghosh, S., Sahoo, R., Nayak, S., & Das, A.P. (2016). Molecular identification of acidophilic Manganese (Mn) solubilizing bacteria from mining effluents and their application in mineral beneficiation. Geomicrobiology Journal, 34, 71–80. doi:10.1080/01490451.2016.1141340
  • Sawhney, S.K., & Singh, R. (2001). Introductory practical biochemistry. Mumbai: Narosa Publishing House.
  • Wang, J., Bai, J., Xu, J., & Liang, B. (2009). Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture. Journal of Hazardous Materials, 172, 1100–1105.10.1016/j.jhazmat.2009.07.102
  • Xin, B., Jiang, W., Li, X., Zhang, K., Liu, C., Wang, R., & Wang, Y. (2012). Analysis of reasons for decline of bioleaching efficiency of spent Zn–Mn batteries at high pulp densities and exploration measure for improving performance. Bioresource Technology, 112, 186–192.10.1016/j.biortech.2012.02.133