2,027
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Remediation techniques applied for aqueous system contaminated by toxic Chromium and Nickel ion

, , , , , , , , & show all
Pages 143-153 | Received 28 Feb 2017, Accepted 03 May 2017, Published online: 28 Jun 2017

References

  • Acar, F., & Malkoc, E. (2004). The removal of chromium (VI) from aqueous solutions by Fagus orientalis L. Bioresource Technology, 94, 13–15. doi:10.1016/j.biortech.2003.10.03210.1016/j.biortech.2003.10.032
  • Ajmal, M., Rao, R.A.K., Ahmad, R., & Ahmad, J. (2000). Adsorption studies on Citrus reticulata (fruit peel of orange): Removal and recovery of Ni(II) from electroplating wastewater. Journal of Hazardous Materials, 79, 117–131.10.1016/S0304-3894(00)00234-X
  • Ajouyed, O., Hurel, C., & Marmier, N. (2011). Evaluation of the adsorption of hexavalent chromium on kaolinite and illite. Journal of Environmental Protection, 02, 1347.10.4236/jep.2011.210155
  • Argun, M. E., & Dursun, S. (2008). A new approach to modification of natural adsorbent for heavy metal adsorption. Bioresource Technology, 99, 2516–2527.10.1016/j.biortech.2007.04.037
  • Argun, M.E., Dursun, S., Ozdemir, C., & Karatas, M. (2007). Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics. Journal of Hazardous Materials, 141, 77–85.10.1016/j.jhazmat.2006.06.095
  • Aroua, M.K., Zuki, F.M., & Sulaiman, N.M. (2007). Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Journal of Hazardous Materials, 147, 752–758.10.1016/j.jhazmat.2007.01.120
  • Attia, A., Khedr, S., & Elkholy, S. (2010). Adsorption of chromium ion (VI) by acid activated carbon. Brazilian Journal of Chemical Engineering, 27, 183–193.10.1590/S0104-66322010000100016
  • Azmat, H., Ali, W., Javid, A., Hussain, A., Hussain, S.M., Saeed, Z., & Bukhari, S.S.H. (2016). Chromium contamination in water, sediment and its bioaccumulation in Indian major carps in river Chenab, Pakistan. Punjab Univ. J. Zool, 31, 83–86.
  • Babel, S., & Kurniawan, T.A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: A review. Journal of Hazardous Materials, 97, 219–243.10.1016/S0304-3894(02)00263-7
  • Bayramoglu, G., & Arica, M.Y. (2011). Synthesis of Cr(VI)-imprinted poly(4-vinyl pyridine-co-hydroxyethyl methacrylate) particles: Its adsorption propensity to Cr(VI). Journal of Hazardous Materials, 187, 213–221.10.1016/j.jhazmat.2011.01.022
  • Bhattacharyya, K.G., & Sarma, A. (2003). Adsorption characteristics of the dye, brilliant green, on neem leaf powder. Dyes and Pigments, 57, 211–222.10.1016/S0143-7208(03)00009-3
  • Bhattacharyya, K.G., Sarma, J., & Sarma, A. (2009). Azadirachta indica leaf powder as a biosorbent for Ni(II) in aqueous medium. Journal of Hazardous Materials, 165, 271–278.10.1016/j.jhazmat.2008.09.109
  • Bohdziewicz, J. (2000). Removal of chromium ions (VI) from underground water in the hybrid complexation-ultrafiltration process. Desalination, 129, 227–235.10.1016/S0011-9164(00)00063-1
  • Chen, J.-H., Hsu, K.-C., & Chang, Y.-M. (2013). Surface modification of hydrophobic resin with tricaprylmethylammonium chloride for the removal of trace hexavalent chromium. Industrial & Engineering Chemistry Research, 52, 11685–11694.10.1021/ie401233r
  • Cheong, W.J., Yang, S.H., & Ali, F. (2013). Molecular imprinted polymers for separation science: A review of reviews. Journal of Separation Science, 36, 609–628.10.1002/jssc.v36.3
  • Chingombe, P., Saha, B., & Wakeman, R. (2005). Surface modification and characterisation of a coal-based activated carbon. Carbon, 43, 3132–3143.10.1016/j.carbon.2005.06.021
  • Da’na, E., De Silva, N., & Sayari, A (2011). Adsorption of copper on amine-functionalized SBA-15 prepared by co-condensation: Kinetics properties. Chemical Engineering Journal, 166, 454–459.10.1016/j.cej.2010.11.017
  • Dakiky, M., Khamis, M., Manassra, A., & Mer’eb, M. (2002). Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6, 533–540.10.1016/S1093-0191(01)00079-X
  • Dave, R., Dave, G., & Mishra, V. (2011). Removal of nickel from eletroplating wastewater by weakly basic chelating anion exchange resins: Dowex 50x4, Dowex 50x2 and Dowex M-4195. Journal of Applied Sciences in Environmental Sanitation, 6, 39–44.
  • Demiralay, E. Ç., Andac, M., Say, R., Alsancak, G., & Denizli, A. (2010). Nickel (II)-imprinted monolithic columns for selective nickel recognition. Journal of Applied Polymer Science, 117, 3704–3714.
  • Demirbaş, E., Kobya, M., Öncel, S., & Şencan, S. (2002). Removal of Ni(II) from aqueous solution by adsorption onto hazelnut shell activated carbon: Equilibrium studies. Bioresource Technology, 84, 291–293.10.1016/S0960-8524(02)00052-4
  • Dermentzis, K., Christoforidis, A., & Valsamidou, E. (2011). Removal of nickel, copper, zinc and chromium from synthetic and industrial wastewater by electrocoagulation. International Journal of Environmental Sciences, 1, 697.
  • Dinker, M.K., & Kulkarni, P.S. (2015). Recent advances in silica-based materials for the removal of hexavalent chromium: A review. Journal of Chemical & Engineering Data, 60, 2521–2540.10.1021/acs.jced.5b00292
  • Dube, B., Tewari, K., Chatterjee, J., & Chatterjee, C. (2003). Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere, 53, 1147–1153.10.1016/S0045-6535(03)00570-8
  • Edition, F. (2011). Guidelines for drinking-water quality. WHO Chronicle, 38, 104–108.
  • Ersöz, A., Say, R., & Denizli, A. (2004). Ni(II) ion-imprinted solid-phase extraction and preconcentration in aqueous solutions by packed-bed columns. Analytica Chimica Acta, 502, 91–97.10.1016/j.aca.2003.09.059
  • Field, R.W., & Withers, B.L. (2012). Occupational and environmental causes of lung cancer. Clinics in Chest Medicine, 33, 681–703.10.1016/j.ccm.2012.07.001
  • Gandhi, M.R., Viswanathan, N., & Meenakshi, S. (2010). Adsorption mechanism of hexavalent chromium removal using Amberlite IRA 743 resin. Ion Exchange Letters, 3, 25–35.
  • Gönen, F., & Serin, D.S. (2012). Adsorption study on orange peel: Removal of Ni (II) ions from aqueous solution. African Journal of Biotechnology, 11, 1250–1258.
  • Gupta, V.K., Ganjali, M., Nayak, A., Bhushan, B., & Agarwal, S. (2012). Enhanced heavy metals removal and recovery by mesoporous adsorbent prepared from waste rubber tire. Chemical Engineering Journal, 197, 330–342.10.1016/j.cej.2012.04.104
  • Gupta, V.K., Mohan, D., Sharma, S., & Park, K.T. (1998). Removal of chromium (VI) from electroplating industry wastewater using bagasse fly ash – A sugar industry waste material. The Environmentalist, 19, 129–136.10.1023/A:1006693017711
  • Güzel, F., Yakut, H., & Topal, G. (2008). Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous Materials, 153, 1275–1287.10.1016/j.jhazmat.2007.09.087
  • Hasar, H. (2003). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from almond husk. Journal of Hazardous Materials, 97, 49–57.10.1016/S0304-3894(02)00237-6
  • Ho, Y., & McKay, G. (1998). Kinetic model for lead (II) sorption on to peat. Adsorption Science & Technology, 16, 243–255.
  • Jamil, T.S., Ibrahim, H.S., El-Maksoud, I.A., & El-Wakeel, S. (2010). Application of zeolite prepared from Egyptian kaolin for removal of heavy metals: I. Optimum conditions. Desalination, 258, 34–40.10.1016/j.desal.2010.03.052
  • Janssen, L., & Koene, L. (2002). The role of electrochemistry and electrochemical technology in environmental protection. Chemical Engineering Journal, 85, 137–146.10.1016/S1385-8947(01)00218-2
  • Kabay, N., Arda, M., Saha, B., & Streat, M. (2003). Removal of Cr(VI) by solvent impregnated resins (SIR) containing aliquat 336. Reactive and Functional Polymers, 54, 103–115.10.1016/S1381-5148(02)00186-4
  • Kadirvelu, K., Faur-Brasquet, C., & Cloirec, P.L. (2000). Removal of Cu(II), Pb(II), and Ni(II) by adsorption onto activated carbon cloths. Langmuir, 16, 8404–8409.10.1021/la0004810
  • Kato, I., & Nagai, S. (1991). Treatment of chromium containing wastewater. Japan Kokai Tokkyo Koho, 224–691.
  • Kinhikar, V. (2012). Removal of nickel (II) from aqueous solutions by adsorption with granular activated carbon (GAC). Research Journal of Chemical Sciences, 2, 6–11.
  • Kongsricharoern, N., & Polprasert, C. (1995). Electrochemical precipitation of chromium (Cr) from an electroplating wastewater. Water Science and Technology, 31, 109–117.10.1016/0273-1223(95)00412-G
  • Korytkowska-Wałach, A. (2013). Molecularly imprinted hydrogels for application in aqueous environment. Polymer Bulletin, 70, 1647–1657.10.1007/s00289-012-0869-9
  • Krishna, R.H., & Swamy, A. (2011). Studies on the removal of Ni (II) from aqueous solutions using powder of mosambi fruit peelings as a low cost sorbent. Chemical Sciences Journal,.1–13
  • Kristiansen, J., Christensen, J.M., Henriksen, T., Nielsen, N.H., & Menné, T. (2000). Determination of nickel in fingernails and forearm skin (stratum corneum). Analytica Chimica Acta, 403, 265–272.10.1016/S0003-2670(99)00568-1
  • Kulkarni, P.S., Kalyani, V., & Mahajani, V.V. (2007). Removal of hexavalent chromium by membrane-based hybrid processes. Industrial & Engineering Chemistry Research, 46, 8176–8182.10.1021/ie070592v
  • Kumar, P.S., Ramakrishnan, K., & Gayathri, R. (2010). Removal of nickel (II) from aqueous solutions by ceralite IR 120 cationic exchange resins. Journal of Engineering Science and Technology, 5, 232–243.
  • Kundra, R., Sachdeva, R., Attar, S., & Parande, M. (2012). Studies on the removal of heavy metal ions from industrial waste water by using titanium electrodes. Journal of Current Chemical and Pharmaceutical Sciences, 2.
  • Kurniawan, T.A., Chan, G.Y., Lo, W.-H., & Babel, S. (2006). Physico–chemical treatment techniques for wastewater laden with heavy metals. Chemical Engineering Journal, 118, 83–98.10.1016/j.cej.2006.01.015
  • Landaburu-Aguirre, J., García, V., Pongrácz, E., & Keiski, R.L. (2009). The removal of zinc from synthetic wastewaters by micellar-enhanced ultrafiltration: Statistical design of experiments. Desalination, 240, 262–269.10.1016/j.desal.2007.11.077
  • Lee, M.-Y., Hong, K.-J., Kajiuchi, T., & Yang, J.-W. (2005). Synthesis of chitosan-based polymeric surfactants and their adsorption properties for heavy metals and fatty acids. International Journal of Biological Macromolecules, 36, 152–158.10.1016/j.ijbiomac.2005.05.004
  • Li, Y., Gao, B., & Du, R. (2011). Studies on preparation and recognition characteristic of surface-ion imprinting material IIP-PEI/SiO 2 of chromate anion. Separation Science and Technology, 46, 1472–1481.10.1080/01496395.2011.561821
  • Long, J., Luo, X., Yin, X., & Wu, X. (2016). An ion-imprinted polymer based on the novel functional monomer for selective removal of Ni(II) from aqueous solution. Journal of Environmental Chemical Engineering, 4, 4776–4785.10.1016/j.jece.2016.11.004
  • Mahvi, A.H., Naghipour, D., Vaezi, F., & Nazmara, S. (2005). Tea waste as an adsorbent for heavy metal removal from industrial wastewaters. Am. J. Appl. Sci, 2, 372–375
  • Mohan, D., & Pittman, C.U. (2006). Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water. Journal of Hazardous Materials, 137, 762–811.10.1016/j.jhazmat.2006.06.060
  • Mohan, D., Singh, K.P., & Singh, V.K. (2005). Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth. Industrial & Engineering Chemistry Research, 44, 1027–1042.10.1021/ie0400898
  • Mohsen-Nia, M., Montazeri, P., & Modarress, H. (2007). Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination, 217, 276–281.10.1016/j.desal.2006.01.043
  • Molinari, R., Poerio, T., & Argurio, P. (2008). Selective separation of copper(II) and nickel(II) from aqueous media using the complexation–ultrafiltration process. Chemosphere, 70, 341–348.10.1016/j.chemosphere.2007.07.041
  • Morelli, I., Chiono, V., Vozzi, G., Ciardelli, G., Silvestri, D., & Giusti, P. (2010). Molecularly imprinted submicronspheres for applications in a novel model biosensor-film. Sensors and Actuators B: Chemical, 150, 394–401.10.1016/j.snb.2010.06.046
  • Muthusamy, P., Murugan, S., & Manothi, S. (2012). Removal of Nickel ion from industrial waste water using Maize cob. ISCA Journal of Biological Sciences, 1, 7–11.
  • Namasivayam, C., & Ranganathan, K. (1993). Waste Fe(III)/Cr(III) hydroxide as adsorbent for the removal of Cr(VI) from aqueous solution and chromium plating industry wastewater. Environmental Pollution, 82, 255–261.10.1016/0269-7491(93)90127-A
  • Oboh, I., Aluyor, E., & Audu, T. (2009). 58 Biosorption of heavy metal ions from aqueous solutions using a biomaterial. Leonardo Journal of Sciences, 14, 58–65
  • Otero-Romaní, J., Moreda-Piñeiro, A., Bermejo-Barrera, P., & Martin-Esteban, A. (2009). Ionic imprinted polymer for nickel recognition by using the bi-functionalized 5-vinyl-8-hydroxyquinoline as a monomer: Application as a new solid phase extraction support. Microchemical Journal, 93, 225–231.10.1016/j.microc.2009.07.011
  • Owlad, M., Aroua, M.K., Daud, W.A.W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air, and Soil Pollution, 200, 59–77.10.1007/s11270-008-9893-7
  • Pakade, V., Cukrowska, E., Darkwa, J., Torto, N., & Chimuka, L. (2011). Selective removal of chromium (VI) from sulphates and other metal anions using an ion-imprinted polymer. Water Sa, 37, 529–538.
  • Park, S.-J., & Jung, W.-Y. (2001). Removal of chromium by activated carbon fibers plated with copper metal. Carbon Letters, 2, 15–21.
  • Pérez-Candela, M., Martín-Martínez, J., & Torregrosa-Maciá, R. (1995). Chromium(VI) removal with activated carbons. Water Research, 29, 2174–2180.10.1016/0043-1354(95)00035-J
  • Pichon, V., & Chapuis-Hugon, F. (2008). Role of molecularly imprinted polymers for selective determination of environmental pollutants – A review. Analytica Chimica Acta, 622, 48–61.10.1016/j.aca.2008.05.057
  • Pinheiro, S.C.L., Descalzo, A.B., Raimundo, I.M., Orellana, G., & Moreno-Bondi, M.C. (2012). Fluorescent ion-imprinted polymers for selective Cu(II) optosensing. Analytical and Bioanalytical Chemistry, 402, 3253–3260.10.1007/s00216-011-5620-0
  • Pradhan, J., Das, S.N., & Thakur, R.S. (1999). Adsorption of hexavalent chromium from aqueous solution by using activated red mud. Journal of Colloid and Interface Science, 217, 137–141.10.1006/jcis.1999.6288
  • Pugazhenthi, G., Sachan, S., Kishore, N., & Kumar, A. (2005). Separation of chromium (VI) using modified ultrafiltration charged carbon membrane and its mathematical modeling. Journal of Membrane Science, 254, 229–239.10.1016/j.memsci.2005.01.011
  • Qaiser, S., Saleemi, A.R., & Mahmood Ahmad, M. (2007). Heavy metal uptake by agro based waste materials. Electronic Journal of Biotechnology, 10, 409–416.
  • Rammika, M., Darko, G., & Torto, N. (2012). Optimal synthesis of a Ni (II)-dimethylglyoxime ion-imprinted polymer for the enrichment of Ni (II) ions in water, soil and mine tailing samples. Water Sa, 38, 261–268.
  • Rana, P., Mohan, N., & Rajagopal, C. (2004). Electrochemical removal of chromium from wastewater by using carbon aerogel electrodes. Water Research, 38, 2811–2820.10.1016/j.watres.2004.02.029
  • Rashid, H., Hasan, M.N., Tanu, M.B., Parveen, R., Sukhan, Z.P., Rahman, M.S., & Mahmud, Y. (2012). Heavy metal pollution and chemical profile of Khiru river, Bangladesh. International Journal of Environment, 2, 57–63.
  • Ren, Z., Kong, D., Wang, K., & Zhang, W. (2014). Preparation and adsorption characteristics of an imprinted polymer for selective removal of Cr( vi ) ions from aqueous solutions. Journal of Materials Chemistry A, 2, 17952–17961.10.1039/C4TA03024A
  • Saatçılar, Ö., Şatıroğlu, N., Say, R., Bektas, S., & Denizli, A. (2006). Binding behavior of Fe3+ ions on ion-imprinted polymeric beads for analytical applications. Journal of Applied Polymer Science, 101, 3520–3528.10.1002/(ISSN)1097-4628
  • Sadeghi, O., Aboufazeli, F., Zhad, H.R.L.Z., Karimi, M., & Najafi, E. (2013). Determination of Pb(II) ions using novel ion-imprinted polymer magnetic nanoparticles: Investigation of the relation between Pb(II) ions in cow’s milk and their nutrition. Food Analytical Methods, 6, 753–760.10.1007/s12161-012-9481-8
  • Sankararamakrishnan, N., Dixit, A., Iyengar, L., & Sanghi, R. (2006). Removal of hexavalent chromium using a novel cross linked xanthated chitosan. Bioresource Technology, 97, 2377–2382.10.1016/j.biortech.2005.10.024
  • Saraji, M., & Yousefi, H. (2009). Selective solid-phase extraction of Ni(II) by an ion-imprinted polymer from water samples. Journal of Hazardous Materials, 167, 1152–1157.10.1016/j.jhazmat.2009.01.111
  • Schmuhl, R., Krieg, H., & Keizer, K. (2001). Adsorption of Cu (II) and Cr (VI) ions by chitosan: Kinetics and equilibrium studies. Water Sa, 27, 1–8.
  • Schoeman, J., Van Staden, J., Saayman, H., & Vorster, W. (1992). Evaluation of reverse osmosis for electroplating effluent treatment. Water Science and Technology, 25, 79–93.
  • Schoeman, J.J., Steyn, A., & Scurr, P.J. (1996). Treatment using reverse osmosis of an effluent from stainless steel manufacture. Water Research, 30, 1979–1984.10.1016/0043-1354(96)00014-0
  • Scorrano, S., Mergola, L., Del Sole, R., & Vasapollo, G. (2011). Synthesis of molecularly imprinted polymers for amino acid derivates by using different functional monomers. International Journal of Molecular Sciences, 12, 1735–1743.10.3390/ijms12031735
  • Shanna, D., & Forster, C. (1996). Removal of hexavalent chromium from aqueous solutions by granular activated carbon. Water SA, 22, 153–160.
  • Sharma, S. (2014). A brief study of various adsorbents for removal of Ni metal ions from waste water. Research Cell : An International Journal of Engineering Sciences, 3.
  • Singh, D., & Mishra, S. (2010). Synthesis, characterization and analytical applications of Ni(II)-ion imprinted polymer. Applied Surface Science, 256, 7632–7637.10.1016/j.apsusc.2010.06.018
  • Spinelli, V.A., Laranjeira, M.C., & Fávere, V.T. (2004). Preparation and characterization of quaternary chitosan salt: Adsorption equilibrium of chromium(VI) ion. Reactive and Functional Polymers, 61, 347–352.10.1016/j.reactfunctpolym.2004.06.010
  • Srivastava, S., Gupta, V., & Mohan, D. (1997). Removal of lead and chromium by activated slag – A blast-furnace waste. Journal of Environmental Engineering, 123, 461–468.10.1061/(ASCE)0733-9372(1997)123:5(461)
  • Srivastava, S., Pant, N., & Pal, N. (1987). Studies on the efficiency of a local fertilizer waste as a low cost adsorbent. Water Research, 21, 1389–1394.10.1016/0043-1354(87)90014-5
  • Srivastava, S., Tyagi, R., & Pant, N. (1989). Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Research, 23, 1161–1165.10.1016/0043-1354(89)90160-7
  • Sthiannopkao, S., & Sreesai, S. (2009). Utilization of pulp and paper industrial wastes to remove heavy metals from metal finishing wastewater. Journal of Environmental Management, 90, 3283–3289.10.1016/j.jenvman.2009.05.006
  • Sud, D., Mahajan, G., & Kaur, M. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review. Bioresource Technology, 99, 6017–6027.10.1016/j.biortech.2007.11.064
  • Udaybhaskar, P., Iyengar, L., & Rao, A. (1990). Hexavalent chromium interaction with chitosan. Journal of Applied Polymer Science, 39, 739–747.10.1002/app.1990.070390322
  • Varma, S., Sarode, D., Wakale, S., Bhanvase, B., & Deosarkar, M. (2013). Removal of nickel from waste water using graphene nanocomposite. International Journal of Chemical and Physical Sciences, 2, 132–139.
  • Volesky, B. (2003). Sorption and biosorption. Montreal: BV Sorbex.
  • Waseem, A., Arshad, J., Iqbal, F., Sajjad, A., Mehmood, Z., & Murtaza, G. (2014). Pollution status of Pakistan: A retrospective review on heavy metal contamination of water, soil, and vegetables. BioMed Research International, 2014.
  • Weber, W.J. (1972). Physicochemical processes for water quality control. Wiley Interscience.
  • Yang, T.C., & Zall, R.R. (1984). Absorption of metals by natural polymers generated from seafood processing wastes. Industrial & Engineering Chemistry Product Research and Development, 23, 168–172.10.1021/i300013a033
  • Zaheer Aslam, M., Ramzan, N., Naveed, S., & Feroze, N. (2010). Ni (II) removal by biosorption using Ficus religiosa (peepal) leaves. Journal of the Chilean Chemical Society, 55, 81–84.