5,452
Views
21
CrossRef citations to date
0
Altmetric
Research Articles

Biomass and carbon stocks of trees in tropical dry forest of East Godavari region, Andhra Pradesh, India

&
Pages 114-122 | Received 05 Feb 2018, Accepted 10 Sep 2018, Published online: 24 Sep 2018

References

  • Achard, F., Eva, H. D., Mayaux, P., Stibig, H. J., & Belward, A. (2004). Improved estimates of net carbon emissions from land cover change in the tropics for the 1990s. Global Biogeochemical Cycles, 18(2), 1–11.
  • Álvarez-Dávila, E., Cayuela, L., González-Caro, S., Aldana, A. M., Stevenson, P. R., Phillips, O., & Melo, O. (2017). Forest biomass density across large climate gradients in northern South America is related to water availability but not with temperature. PloS one, 12(3), 1–16, p.e0171072.
  • Anbarashan, M., & Parthasarathy, N. (2012). Tree diversity and forest stand structure along disturbance gradients in Indian tropical dry evergreen forest. Ecotropica, 18(2), 119–136.
  • Becknell, J. M. (2012). Carbon cycling in secondary tropical dry forest from species to 16 global scales. (Ph.D. Dissertation). University of Minnesota. Retrieved from the University of Minnesota Digital Conservancy, http://hdl.handle.net/11299/136056.
  • Becknell, J. M., Kissing Kucek, L., & Powers, J. S. (2012). Aboveground biomass in mature and secondary seasonally dry tropical forests: A literature review and global synthesis. Forest Ecology and Management, 276, 88–95.
  • Becknell, J. M., & Powers, J. S. (2014). Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest. Canadian Journal of Forest Research, 44(6), 604–613.
  • Behera, S. K., & Misra, M. K. (2006). Aboveground tree biomass in a recovering tropical sal (Shorea robusta Gaertn. f.) forest of Eastern Ghats, India. Biomass and Bioenergy, 30(6), 509–521.
  • Brown, I. F., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Ferreira, C. C., & Victoria, R. A. (1995). Uncertainty in the biomass of Amazonian forests: An example from Rondonia, Brazil. Forest Ecology and Management, 75(1–3), 175–189.
  • Brown, S. (1996). Tropical forests and the global carbon cycle: Estimating state and change in biomass density. In M. J. Apps, & D. T. Price (Eds.), Forest ecosystems, forest management and the global carbon cycle (pp. 135–144). Berlin, Heidelberg: Springer.
  • Brown, S., Gillespie, A. J., & Lugo, A. E. (1989). Biomass estimation methods for tropical forests with applications to forest inventory data. Forest Science, 35(4), 881–902.
  • Brown, S., & Lugo, A. E. (1990). Tropical secondary forests. Journal of Tropical Ecology, 6(1), 1–32.
  • Brown, S., & Lugo, A. E. (1992). Aboveground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia. Caracas, 17(1), 8–18.
  • Ceccon, E., Sanchéz, S., & Campo, J. (2004). Tree seedling dynamics in two abandoned tropical dry forests of differing successional status in Yucatán, Mexico: A field experiment with N and P fertilization. Plant Ecology, 170, 12–26.
  • Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2012a). Effect of grazing and harvesting on diversity, recruitment and carbon accumulation of juvenile trees in tropical dry forests. Forest Ecology and Management, 284, 152–162.
  • Chaturvedi, R. K., Raghubanshi, A. S., & Singh, J. S. (2012b). Biomass estimation of dry tropical woody species at juvenile stage. The Scientific World Journal, Article ID 790219, 1–5.
  • Chave, J., Condit, R., Lao, S., Caspersen, J. P., Foster, R. B., & Hubbell, S. P. (2003). Spatial and temporal variation of biomass in a tropical forest: Results from a large census plot in Panama. Journal of Ecology, 91(2), 240–252.
  • COP 21. (2015). Twenty-first meeting of the conference of the parties United Nations Framework Convention on Climate Change (UNFCCC). Paris, France. 30th November −11th December 2015. Retrived from https://unfccc.int/news/finale-cop21
  • Culmsee, H., Leuschner, C., Moser, G., & Pitopang, R. (2010). Forest aboveground biomass along an elevational transect in Sulawesi, Indonesia, and the role of Fagaceae in tropical montane rain forests. Journal of Biogeography, 37(5), 960–974.
  • Datta, A., & Goyal, S. P. (1996). Comparison of forest structure and use by the Indian Giant Squirrel (Ratufa indica) in two riverine forests of Central India. Biotropica, 28(3), 394–399.
  • Djomo, A. N., Knohl, A., & Gravenhorst, G. (2011). Estimations of total ecosystem carbon pools distribution and carbon biomass current annual increment of a moist tropical forest. Forest Ecology and Management, 261(8), 1448–1459.
  • Ebeling, J., & Yasué, M. (2008). Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1498), 1917–1924.
  • FAO. (1995). Forest Resources Assessment 1990. Global Synthesis. Rome: FAO.
  • Gandhi, D. S., & Sundarapandian, S. (2017). Large-scale carbon stock assessment of woody vegetation in tropical dry deciduous forest of Sathanur reserve forest, Eastern Ghats, India. Environmental Monitoring and Assessment, 189(4), 187.
  • Hertel, D., Moser, G., Culmsee, H., Erasmi, S., Horna, V., Schuldt, B., & Leuschner, C. (2009). Below-and above-ground biomass and net primary production in a paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests. Forest Ecology and Management, 258(9), 1904–1912.
  • Htun, N. Z., Mizoue, N., Kajisa, T., & Yosida, S. (2011). Tree species composition and diversity at different levels of disturbance in Popa Mountain Park, Myanmar. Biotropica, 43(5), 597–603.
  • Johnsingh, A. J. T., & Joshua, J. (1989). The threatened gallery forest of the river Tambiraparani, Mundanthurai Wildlife Sanctuary, south India. Biological Conservation, 47(4), 273–280.
  • Júnior, P., Resende, L., Andrade, E. M. D., Palácio, H. A. D. Q., Raymer, P. C. L., Ribeiro Filho, J. C., & Pereira, F. J. S. (2016). Carbon stocks in a tropical dry forest in Brazil. Revista Ciência Agronômica, 47(1), 32–40.
  • Kundu, M., & Schmidt, L. H. (Ed.) (2015). Terminalia Arjuna (Roxb. ex DC) Wight & Arn. Seed Leaflet, (166) Retrived from http://www.forskningsdatabasen.dk/en/catalog/2398337778.
  • Lewis, S. L., Lopez-Gonzalez, G., Sonké, B., Affum-Baffoe, K., Baker, T. R., Ojo, L. O., … Ewango, C. E. (2009). Increasing carbon storage in intact African tropical forests. Nature, 457(7232), 1003.
  • Lewis, S. L., Sonké, B., Sunderland, T., Begne, S. K., Lopez-Gonzalez, G., Van Der Heijden, G. M., … Bastin, J. F. (2013). Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B, 368(1625), 20120295.
  • Lung, M., & Espira, A. (2015). The influence of stand variables and human use on biomass and carbon stocks of a transitional African forest: Implications for forest carbon projects. Forest Ecology and Management, 351, 36–46.
  • Malhi, Y., Wood, D., Baker, T. R., Wright, J., Phillips, O. L., Cochrane, T., … Higuchi, N. (2006). The regional variation of aboveground live biomass in old‐growth Amazonian forests. Global Change Biology, 12(7), 1107–1138.
  • Marod, D., Kutintara, U., Tanaka, H., & Nakashizuka, T. (2004). Effects of drought and fire on seedling survival and growth under contrasting light conditions in a seasonal tropical forest. Journal of Vegetation Science, 15, 691–700.
  • Midgley, G. F., Bond, W. J., Kapos, V., Ravilious, C., Scharlemann, J. P., & Woodward, F. I. (2010). Terrestrial carbon stocks and biodiversity: Key knowledge gaps and some policy implications. Current Opinion in Environmental Sustainability, 2(4), 264–270.
  • Midgley, J. J., & Niklas, K. J. (2004). Does disturbance prevent total basal area and biomass in indigenous forests from being at equilibrium with the local environment? Journal of Tropical Ecology, 20(5), 595–597.
  • Mohanraj, R., Saravanan, J., & Dhanakumar, S. (2011). Carbon stock in Kolli forests, Eastern Ghats (India) with emphasis on aboveground biomass, litter, woody debris and soils. iForest-Biogeosciences and Forestry, 4(2), 61.
  • Murphy, P. G., & Lugo, A. E. (1986). Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 17(1), 67–88.
  • Naveenkumar, J., Arunkumar, K. S., & Sundarapandian, S. M. (2017). Biomass and carbon stocks of a tropical dry forest of the Javadi Hills, Eastern Ghats, India. Carbon Management, 8(5–6), 351–361.
  • Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … Ciais, P. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993.
  • Pragasan, L. A. (2014). Carbon stock assessment in the vegetation of the Chitteri Reserve Forest of the Eastern Ghats in India based on non-destructive method using tree inventory data. Journal of Earth Science & Climatic Change,S11, 1–6.
  • Pragasan, L. A. (2015). Assessment of aboveground biomass stock in the Pachaimalai forest of Eastern Ghats in India. Applied Ecology and Environmental Research, 13(1), 133–145.
  • Pullaiah, T., Rao, D. M., Ramamurthy, K. S., Karuppusamy, S., & Rani, S. S. (2011). Floras of Eastern Ghats: Hill ranges of South East India (Vols. 1–4). Hyderabad, India: INTACH, Andhra Pradesh State Chapter publications.
  • Ravindranath, N. H., & Ostwald, M. (2008). Methods for estimating above-ground biomass. In: Carbon inventory methods handbook for greenhouse gas inventory, carbon mitigation and roundwood production projects (pp. 113–147). Dordrecht: Springer Netherlands.
  • Sahu, S. C., Sharma, J., & Ravindranath, N. H. (2015). Carbon stocks and fluxes for forests in Odisha (India). Tropical Ecology, 56(1), 77–85.
  • Sahu, S. C., Suresh, H. S., & Ravindranath, N. H. (2016). Forest structure, composition and aboveground biomass of tree community in tropical dry forests of Eastern Ghats, India. Notulae Scientia Biologicae, 8(1), 125–133.
  • Sheikh, M. A., Kumar, M., Bussman, R. W., & Todaria, N. P. (2011). Forest carbon stocks and fluxes in physiographic zones of India. Carbon Balance Manage, 6, 15.
  • Sheil, D., & Burslem, D. F. R. P. (2003). Disturbing hypothesis in tropical forests. Trends in Ecology & Evolution, 18, 18–26.
  • Slik, J. W. F., Aiba, S. I., Brearley, F. Q., Cannon, C. H., Forshed, O., Kitayama, K., … Poulsen, A. D. (2010). Environmental correlates of tree biomass, basal area, wood specific gravity and stem density gradients in Borneo’s tropical forests. Global Ecology and Biogeography, 19(1), 50–60.
  • Srinivas, K., & Sundarapandian, S. (2018). Diversity, population structure and distribution of trees in tropical dry forests, East Godavari District, Eastern Ghats, India. International Journal of Ecology & Development, 33(2), 13–32.
  • Sundarapandian, S. M., Dar, J. A., Gandhi, D. S., Srinivas, K., & Subashree, K. (2013). Estimation of biomass and carbon stocks in tropical dry forests in Sivagangai district, Tamil Nadu, India. International Journal of Environmental Science and Engineering Research, 4(3), 66–76.
  • UNFAO. (2010). Managing forests for climate change. Food and Agriculture Organization of the United Nations, I1960E/1/11.10 Retrieved from www.fao.org/docrep/013/i1960e/i1960e00.pdf
  • UNFAO. (2015). Durban declaration: 2050 vision for forests and forestry. Food and Agriculture Organization of the United Nations Rome. Retrieved from www.fao.org/fileadmin/user_upload/wfc2015/../Durban_Declaration_draft.pdf
  • UNFCCC. (2014). Report of the conference of the parties on its nineteenth session. Warsaw, 11th–23rd November 2013. Addendum. FCCC/CP/2013/10/Add.1. UN Framework Convention on Climate Change, Bonn.
  • Vieilledent, G., Vaudry, R., Andriamanohisoa, S. F., Rakotonarivo, O. S., Randrianasolo, H. Z., Razafindrabe, H. N., … Rasamoelina, M. (2012). A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications, 22(2), 572–583.