3,560
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Copper (Cu) tolerance and accumulation potential in four native plant species: a comparative study for effective phytoextraction technique

, , , , , & show all
Pages 53-64 | Received 27 Sep 2019, Accepted 27 Nov 2019, Published online: 12 Dec 2019

References

  • Adhikari, T., Kundu, S., Biswas, A. K., Tarafdar, J. C., & Rao, A. S. (2012). Effect of copper oxide nano particle on seed germination of selected crops. Journal of Agricultural Science and Technology, A, 2(6A), 815.
  • Ahsan, N., Lee, D. G., Lee, S. H., Kang, K. Y., Lee, J. J., Kim, P. J., & Lee, B. H. (2007). Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere, 67, 1182–1193.
  • Ali, S., Shahbaz, M., Shahzad, A. N., Fatima, A., Khan, H. A., Anees, M., & Haider, M. S. (2015). Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata) in hydroponics. PeerJ, 3, e1119.
  • Ansari, M. K. A., Oztetik, E., Ahmad, A., Umar, S., Iqbal, M., & Owens, G. (2013). Identification of the phytoremediation potential of Indian mustard genotypes for copper, evaluated from a hydroponic experiment. Clean: Soil Air Water, 41, 789–796.
  • Arnon, D. I. (1949). Copper enzymes in isolated chloroplasts: Polyphenol oxidase in beta vulgaris. Plant Physiology, 24, 1–15.
  • Audet, P., & Charest, C. (2007). Heavy metal phytoremediation from a meta-analytical perspective. Environmental Pollution, 147, 231–237.
  • Awokunmi, E. E. (2016). The potential of abelmoschus esculentus in EDTA-assisted phytoextraction of heavy metals from soil of Bashiri Dumpsite, Ado Ekiti, Nigeria. International Journal of Environmental Protection, 6, 9–14.
  • Azooz, M. M., Abou-Elhamd, M. F., & Al-Fredan, M. A. (2012). Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum’cv. Hasaawi) at early growing stage. Australian Journal of Crop Science, 6, 688–694.
  • Barbosa, R. H., Tabaldi, L. A., Miyazaki, F. R., Pilecco, M., Kassab, S. O., & Bigaton, D. (2013). Foliar copper uptake by maize plants: Effects on growth and yield. Ciencia Rural, 43, 1561–1568.
  • Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782–2799.
  • Ciura, J., Poniedziałek, M., Sękara, A., & Jędrszczyk, E. (2005). The possibility of using crops as metal phytoremediants. Polish Journal of Environmental Studies, 14, 17–22.
  • Cui, S., Zhou, Q., & Chao, L. (2007). Potential hyperaccumulation of Pb, Zn, Cu and Cd in endurant plants distributed in an old smeltery, northeast China. Environmental Geology, 51, 1043–1048.
  • Dresler, S., Hanaka, A., Bednarek, W., & Maksymiec, W. (2014). Accumulation of low-molecular-weight organic acids in roots and leaf segments of Zea mays plants treated with cadmium and copper. Acta Physiologiae Plantarum, 36, 1565–1575.
  • Fanrong, Z., Shafaqat, A., Haitao, Z., Younan, O., Boyin, Q., Feibo, W., & Guoping, Z. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159, 84–91.
  • Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformation in the soil rhizosphere plant system, fundamentals and potential application of phytoremediation. Journal of Biotechnology, 99, 259–278.
  • Gopal, R., & Rizvi, A. H. (2008). Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere, 70(9), 1539–1544.
  • Hanen, Z., Tahar, G., Abelbasset, L., Rawdha, B., Rim, G., Majda, M., … Chedly, A. (2010). Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: Tolerance and accumulation. Journal of Hazardous Materials, 183, 609–615.
  • Hegedus, A., Erdei, S., & Horvath, G. (2001). Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedings under cadmium stress. Plant Science, 160, 1085–1093.
  • Herawati, N., Suzuki, S., Hayashi, K., Rivai, I. F., & Koyoma, H. (2000). Cadmium, copper and zinc levels in rice and soil of Japan, Indonesia and China by soil type. Bulletin of Environmental Contamination and Toxicology, 64, 33–39.
  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.
  • Keller, C., Ludwig, C., Davoli, F., & Wochele, J. (2005). Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environmental Science & Technology, 39(9), 3359–3367.
  • Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247–268.
  • Li, F. (2018). Heavy metal in urban soil: Health risk assessment and management. Heavy Metals, 337.
  • Li, L., Li, X., & Wang, B. (2019). Public health challenges in China. In Introduction to public health in China (pp. 63–68). Singapore: Springer.
  • Li, M. S., Luo, Y. P., & Su, Z. Y. (2007). Heavy metal concentrations in soils and plant accumulation in a restored manganese mine land in Guangxi, South China. Environmental Pollution, 147, 168–175.
  • Li, X., Yang, Y., Zhang, J., Jia, L., Li, Q., Zhang, T., … Ma, S. (2012). Zinc induced phytotoxicity mechanism involved in root growth of Triticum aestivum L. Ecotoxicology and Environmental Safety, 86, 198–203.
  • Luo, Z. B., He, X. J., Chen, L., Tang, L., Gao, S., & Chen, F. (2010). Effects of zinc on growth and antioxidant responses in Jatropha curcas seedlings. International Journal of Agriculture & Biology, 12, 119–124.
  • Mackie, K. A., Müller, T., & Kandeler, E. (2012). Remediation of copper in vineyards - a mini review. Environmental Pollution, 167, 16–26.
  • Mahmood, T., & Islam, K. R. (2006). Response of rice seedlings to copper toxicity and acidity. Journal of Plant Nutrition, 29, 943–957.
  • Malik, N., & Biswas, A. K. (2012). Role of higher plants in remediation of metal contaminated sites. SciRev Chemical Communications, 2(2), 141–146.
  • Mani, D., & Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: An overview with special reference to phytoremediation. International Journal of Environmental Science and Technology, 11(3), 843–872.
  • McGrath, S. P., & Zhao, F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Current Opinion in Biotechnology, 14, 561–572.
  • Mehmood, F., Rashid, A., Mahmood, T., & Dawson, L. (2013). Effect of DTPA on Cd solubility in soil accumulation and subsequent toxicity to lettuce. Chemosphere, 90, 1805–1810.
  • Memon, A. R., & Schroder, P. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 16, 162–175.
  • Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments - an emerging remediation technology. Environment Health Perspective, 116, 278–283.
  • Mildvan, A. S. (1970). Metal in enzymes catalysis. In D. D. Boyer (Ed.), The enzymes (Vol. 11, pp. 445–536). London: Academic Press.
  • Monni, S., Salemma, M., & Millar, N. (2000). The tolerance of Empetrum nigrum to copper and nickel. Environmental Pollution, 109, 221–229.
  • Muhammad, A., Shafaqat, A., Muhammad, R., Muhammad, I., Farhat, A., Mujahid, F., … Saima, A. B. (2015). The effect of excess copper on growth and physiology of important food crops: A review. Environmental Science and Pollution Research, 22(11), 8148–8162.
  • Mukhopadhyay, M., Das, A., Subba, P., Bantawa, P., Sarkar, B., Ghosh, P. D., & Mondal, T. K. (2013). Structural, physiological and biochemical profiling of tea plants (Camellia sinensis (L.) O. Kuntze) under zinc stress. Biologia Plantarum, 57, 474–480.
  • Odjegba, V., & Fasidi, I. (2007). Phytoremediation of heavy metals by Eichhornia crassipes. The Environmentalist, 27(3), 349–355.
  • Oh, K., Li, T., Cheng, H. Y., Xie, Y., Yonemochi, S., Yan, L., & Shinichi, Y. (2013). Development of profitable phytoremediation of contaminated soils with biofuel crops. Journal of Environmental Protection, 4, 58–64.
  • Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: Hyper accumulation metals in plants. Water, Air, and Soil Pollution, 184(1–4), 105–126.
  • Pourakbar, L., Khayami, M., Khara, J., & Farbidina, T. (2007). Physiological effects of copper on some biochemical parameters in Zea mays L. seedlings. Pakistan Journal of Biological Sciences, 10, 4092–4096.
  • Rachit, K., Verma, K. S., Meena, T., Yashveer, V., & Shreya, H. (2016). Phytoextraction and bioconcentration of heavy metals by Spinacia oleracea grown in paper mill effluent irrigated soil. Nature Environment and Pollution Technology, 15, 817–824.
  • Rafati, M., Khorasani, N., Moattar, F., Shirvany, A., Moraghebi, F., & Hosseinzadeh, S. (2011). Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. International Journal of Environmental Research, 5, 961–970.
  • Rashid, H., Manzoor, M. M., & Mukhtar, S. (2018). Urbanization and its effects on water resources: An exploratory analysis. Asian Journal of Water, Environment and Pollution, 15(1), 67–74.
  • Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: Using plants to clean up the environment. New York: Wiley.
  • Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2011). Dual role of microalgae: Phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411–3424.
  • Rebecca, R.C. (2011). Copper: Inorganic and coordination chemistry. Encyclopedia of Inorganic and Bioinorganic Chemistry, John Wiley and Sons, Ltd. USA.
  • Rohan, D., Mayank, V., João, P., & Paul, M. S. (2013). Spatial distribution of heavy metals in soil and flora associated with the glass industry in North Central India: Implications for phytoremediation. Soil and Sediment Contamination: an International Journal, 22, 1–20.
  • Salt, D. E., Smith, R. D., & Raskin, I. (1998). Phytoremediation. Annual Review of Plant Physiology, 49, 643–668.
  • Seregin, T. V., & Ivanov, V. B. (2001). Physiological aspects of toxin action of cadmium and lead on high plants. Plant Physiology, 48, 606–630.
  • Shaikh, I. R., Shaikh, P. R., Shaikh, R. A., & Shaikh, A. A. (2013). Phytotoxic effects of heavy metals (Cr, Cd, Mn and Zn) on wheat (Triticum aestivum L.) seed germination and seedlings growth in black cotton soil of Nanded, India. Research Journal of Chemical Sciences, 3(6), 14–23.
  • Sharma, S., Singh, B., & Manchanda, V. K. (2014). Phytoremediation: Role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water. Environmental Science and Pollution Research, 22, 946–962.
  • Singh, D., Nath, K., & Sharma, Y. K. (2007). Response of wheat seed germination and seedling growth under copper stress. Journal of Environmental Biology, 28, 409–414.
  • Srinivasan, M., Sahi, S. V., Paulo, J. C. F., & Venkatachalam, P. (2014). Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55(1), 54.
  • Stadtman, E. R., & Oliver, C. N. (1991). Metal catalyzed oxidation of proteins. Physiological consequences. Journal of Biological Chemistry, 266(4), 2005–2008.
  • Sun, Y. B., Zhou, Q. X., Wang, L., & Liu, W. T. (2009). The influence of different growth stages and dosage of EDTA on Cd uptake and accumulation in Cd hyperaccumulator (Solanium nigrum L.). Bulletin of Environmental Contamination and Toxicology, 82, 348–353.
  • Talebi, S., Nabavi, K. S. M., & Sohani, D. A. L. (2014). The study effects of heavy metals on germination characteristics and proline content of Triticale (Triticoseale wittmack). International Journal of Farming & Allied Sciences, 3, 1080–1087.
  • Tong, Y. P., Kneer, R., & Zhu, Y. G. (2004). Vacuolar compartmentalization: A second generation approach to engineering plants for phytoremediation. Trends in Plant Science, 9, 7–9.
  • Usman, A. R., Lee, S. S., Awad, Y. M., Lim, K. J., Yang, J. E., & Ok, Y. S. (2012). Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea. Chemosphere, 87(8), 872–878.
  • Vymazal, J. (2016). Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Science of the Total Environment, 544, 495–498.
  • Wilkins, D. A. (1978). The measurement of tolerance to edaphic factors by means of root growth. New Phytologist, 80, 623–633.
  • Wintz, H., Fox, T., & Vulpe, C. (2002). Responses of plants to iron, zinc and copper deficiencies. Biochemical Society Transactions, 30, 766–768.
  • Wodala, B., Eitel, G., Gyula, T. N., Ördög, A., & Horváth, F. (2012). Monitoring moderate Cu and Cd toxicity by chlorophyll fluorescence and P700 absorbance in pea leaves. Photosynthetica, 50, 380–386.
  • Wu, Q., Zhang, X., Liu, C., & Chen, Z. (2018). The de-industrialization, re-suburbanization and health risks of brownfield land reuse: Case study of a toxic soil event in Changzhou, China. Land Use Policy, 74, 187–194.
  • Wuana, R. A., & Okieimen, F. E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Isrn Ecology, 2011, 1–20.
  • Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.
  • Yue-bing, S., Qixing, Z., Jing, A., Wei-tao, L., & Rui, L. (2009). Chelator enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial waste water with the hyperaccumulator plant (Sedum alfredii Hence). Geoderma, 150, 105–112.