995
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Digital core reconstruction research: challenges and prospects

, , , , , & show all
Pages 49-56 | Received 01 Apr 2022, Accepted 31 May 2022, Published online: 10 Jun 2022

References

  • Banhart, J. (Ed.). (2008). Advanced tomographic methods in materials research and engineering (Vol. 66). OUP Oxford.
  • Bembel, S. R., Aleksandrov, V. M., Ponomarev, A. A., Markov, P. V., & Rodionov, S. P. (2019). Evaluation of filtration-capacitive properties of complex reservoir rocks using the results of core microtomography (Russian). Neftyanoe khozyaystvo-Oil Industry, 2019(8), 86–88. https://doi.org/10.24887/0028-2448-2019-8-86-88
  • Bilger, C., Aboukhedr, M., Vogiatzaki, K., & Cant, R. S. (2017). Evaluation of two-phase flow solvers using level set and volume of Fluid methods. Journal of Computational Physics, 345, 665–686. https://doi.org/10.1016/j.jcp.2017.05.044
  • Brailovskaya, A. A., & Oks, L. S. (2021). Study of the distorting effect of development processes on open-hole well logging using the example of old fields in the Eastern Ciscaucasia (Russian). Neftyanoe khozyaystvo-Oil Industry, 2021(1), 23–27. https://doi.org/10.24887/0028-2448-2021-1-23-27
  • Dinariev, O. Y., & Evseev, N. V. (2010). Modeling of surface phenomena in the presence of surface-active agents on the basis of the density-functional theory. Fluid Dynamics, 45(1), 85–95. https://doi.org/10.1134/S0015462810010102
  • Eichheimer, P., Thielmann, M., Popov, A., Golabek, G. J., Fujita, W., Kottwitz, M. O., & Kaus, B. J. (2019). Pore-scale permeability prediction for Newtonian and non-Newtonian fluids. Solid Earth, 10(5), 1717–1731. https://doi.org/10.5194/se-10-1717-2019
  • Gafurova, D., Kalmykov, A., Korost, D., & Kalmykov, G. (2021). Macropores generation in the domanic formation shales: Insights from pyrolysis experiments. Fuel, 289, 119933. https://doi.org/10.1016/j.fuel.2020.119933
  • Gajica, G., Šajnović, A., Stojanović, K., Schwarzbauer, J., Kostić, A., & Jovančićević, B. (2022). A comparative study of the molecular and isotopic composition of biomarkers in immature oil shale (Aleksinac deposit, Serbia) and its liquid pyrolysis products (open and closed systems). Marine and Petroleum Geology, 136, 105383. https://doi.org/10.1016/j.marpetgeo.2021.105383
  • Gerke, K. M., Karsanina, M. V., Sizonenko, T. O., Miao, X., Gafurova, D. R., & Korost, D. V. (2017, October). Multi-scale image fusion of X-ray microtomography and SEM data to model flow and transport properties for complex rocks on pore level. In SPE Russian Petroleum Technology Conference, OnePetro. https://doi.org/10.2118/187874-MS
  • Gerke, K. M., Korost, D. V., Karsanina, M. V., Korost, S. R., Vasiliev, R. V., Lavrukhin, E. V., & Gafurova, D. R. (2021). Study and analysis of modern approaches to digital core modeling and multiphase filtration modelling methods at pore space scale. Georesources, 23(2), 197–213. https://doi.org/10.18599/grs.2021.2.20
  • Grandmougin, A., Bakour, O., Villani, N., Baumann, C., Rousseau, H., Teixeira, P. A. G., & Blum, A. (2020). Metal artifact reduction for small metal implants on CT: Which image reconstruction algorithm performs better? European Journal of Radiology, 127, 108970. https://doi.org/10.1016/j.ejrad.2020.108970
  • Holmes, D. W., Williams, J. R., Tilke, P., & Leonardi, C. R. (2016). Characterizing flow in oil reservoir rock using SPH: Absolute permeability. Computational Particle Mechanics, 3(2), 141–154. https://doi.org/10.1007/s40571-015-0038-7
  • Ibrahim, E. R., Jouini, M. S., Bouchaala, F., & Gomes, J. (2021). Simulation and validation of porosity and permeability of synthetic and real rock models using three-dimensional printing and digital rock physics. ACS Omega, 6(47), 31775–31781. https://doi.org/10.1021/acsomega.1c04429
  • Ivanov, E., Demianov, A., Sidorenkov, A., Beletskaya, A., Dovgilovich, L., Abdrazakov, D., & Dinariev, O. (2020, October). Acid treatment optimisation based on digital core analysis. In SPE Russian Petroleum Technology Conference, OnePetro. https://doi.org/10.2118/202016-MS
  • Ivanov, E., Korobkov, D., Varfolomeev, I., Demianov, A., Sidorenkov, A., Beletskaya, A., & Stukan, M. (2021, September). Digital core analysis as an efficient tool for acid treatment optimization. In SCA Annual Symposium (Virtual). http://www.jgmaas.com/SCA/2021/SCA2021-004.pdf
  • Jacob, A., Peltz, M., Hale, S., Enzmann, F., Moravcova, O., Warr, L. N., Kersten, M., Blum, P., & Kersten, M. (2021). Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging. Solid Earth, 12(1), 1–14. https://doi.org/10.5194/se-12-1-2021
  • Kadyrov, R., Nurgaliev, D., Saenger, E. H., Balcewicz, M., Minebaev, R., Statsenko, E., Galiullin, B., Nizamova, A., & Galiullin, B. (2022). Digital rock physics: Defining the reservoir properties on drill cuts. Journal of Petroleum Science and Engineering, 210, 110063. https://doi.org/10.1016/j.petrol.2021.110063
  • Khirevich, S., Ginzburg, I., & Tallarek, U. (2015). Coarse-and fine-grid numerical behavior of MRT/TRT lattice-Boltzmann schemes in regular and random sphere packings. Journal of Computational Physics, 281, 708–742. https://doi.org/10.1016/j.jcp.2014.10.038
  • Kohanpur, A. H., & Valocchi, A. J. (2020). Pore-network stitching method: A pore-to-core upscaling approach for multiphase flow. Transport in Porous Media, 135(3), 659–685. https://doi.org/10.1007/s11242-020-01491-0
  • Kornilov, A. S., Reimers, I. A., Safonov, I. V., & Yakimchuk, I. V. (2020). Visualization of quality of 3D tomographic images in construction of digital rock model. Scientific Visualization, 12(1), 70–82. https://doi.org/10.26583/sv.12.1.06
  • Lin, R., Ren, L., Zhao, J., Tan, X., Rasouli, V., Wang, X., Shen, C., Song, Y., & Shen, C. (2022). Stress and pressure dependent permeability of shale rock: Discrete element method (DEM) simulation on digital core. Journal of Petroleum Science and Engineering, 208, 109797. https://doi.org/10.1016/j.petrol.2021.109797
  • Mees, F., Swennen, R., Van Geet, M., & Jacobs, P. (2003). Applications of X-ray computed tomography in the geosciences. Geological Society, London, Special Publications, 215(1), 1–6. https://doi.org/10.1144/GSL.SP.2003.215.01.01
  • Miao, X., Gerke, K. M., & Sizonenko, T. O. (2017). A new way to parameterize hydraulic conductances of pore elements: A step towards creating pore-networks without pore shape simplifications. Advances in Water Resources, 105, 162–172. https://doi.org/10.1016/j.advwatres.2017.04.021
  • Pal, A. K., Garia, S., Ravi, K., & Nair, A. M. (2022). Pore scale image analysis for petrophysical modelling. Micron, 154, 103195. https://doi.org/10.1016/j.micron.2021.103195
  • Payton, R. L., Sun, Y., Chiarella, D., & Kingdon, A. (2022). Pore scale numerical modelling of geological carbon storage through mineral trapping using true pore geometries. Transport in Porous Media, 141, 1–27. https://doi.org/10.1007/s11242-021-01741-9
  • Peixoto Filho, F. T., Vargas Junior, E. D. A., Santos, E. S. R., & Ferreira, F. H. (2021). Core jamming in unconsolidated formations. Geotechnical and Geological Engineering, 39(6), 4127–4142. https://doi.org/10.1007/s10706-021-01741-y
  • Perez, S., Moonen, P., & Poncet, P. (2022). On the deviation of computed permeability induced by unresolved morphological features of the pore space. Transport in Porous Media, 141(1), 151–184. https://doi.org/10.1007/s11242-021-01713-z
  • Ponomarev, A., Zavatsky, M., Nurullina, T., Kadyrov, M., Galinsky, K., & Tugushev, O. (2021). Application of core X-ray microtomography in oilfield geology. Georesources, 23(4), 34–43. https://doi.org/10.18599/grs.2021.4.4
  • Ponomarev, A. A., Alexandrov, V. M., Kobylinskiy, D. A., Kadyrov, M. A., Vaganov, Y. V., Leontev, D. S., & Tajik, A. (2022). A new set of search criteria for oil deposits in oil-bearing sediments based on geochemical and geophysical information. Journal of Petroleum Science and Engineering, 208, 109794. https://doi.org/10.1016/j.petrol.2021.109794
  • Ramandi, H. L., Pirzada, M. A., Saydam, S., Arns, C., & Roshan, H. (2021). Digital and experimental rock analysis of proppant injection into naturally fractured coal. Fuel, 286, 119368. https://doi.org/10.1016/j.fuel.2020.119368
  • Rassouli, F. S., & Lisabeth, H. (2021). Analysis of time-dependent strain heterogeneity in shales using X-ray microscopy and digital volume correlation. Journal of Natural Gas Science and Engineering, 92, 103984. https://doi.org/10.1016/j.jngse.2021.103984
  • Rokhforouz, M. R., & Akhlaghi Amiri, H. A. (2017). Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium. Physics of Fluids, 29(6), 062104. https://doi.org/10.1063/1.4985290
  • Schlüter, S., Sheppard, A., Brown, K., & Wildenschild, D. (2014). Image processing of multiphase images obtained via X-ray microtomography: A review. Water Resources Research, 50(4), 3615–3639. https://doi.org/10.1002/2014WR015256
  • Sedaghat, M. H., Gerke, K., Azizmohammadi, S., & Matthai, S. K. (2016). Simulation-based determination of relative permeability in laminated rocks. Energy Procedia, 97, 433–439. https://doi.org/10.1016/j.egypro.2016.10.041
  • Shulakova, V., Pervukhina, M., Müller, T. M., Lebedev, M., Mayo, S., Schmid, S., Gurevich, B., De Paula, O. B., Clennell, M. B., & Gurevich, B. (2013). Computational elastic up-scaling of sandstone on the basis of X-ray micro-tomographic images. Geophysical Prospecting, 61(2), 287–301. Rock Physics for Reservoir Exploration, Characterisation and Monitoring. https://doi.org/10.1111/j.1365-2478.2012.01082.x
  • Soltani, P., Johari, M. S., & Zarrebini, M. (2015). 3D fiber orientation characterization of nonwoven fabrics using X-ray micro-computed tomography. World Journal of Engineering and Technology, 1, 41–47.
  • Soulaine, C., Gjetvaj, F., Garing, C., Roman, S., Russian, A., Gouze, P., & Tchelepi, H. A. (2016). The impact of sub-resolution porosity of X-ray microtomography images on the permeability. Transport in Porous Media, 113(1), 227–243. https://doi.org/10.1007/s11242-016-0690-2
  • Stock, S. R. (2019). Microcomputed tomography: Methodology and applications. CRC press. https://doi.org/10.1201/9780429186745
  • Sun, N., Chen, T., Zhong, J., Gao, J., Shi, X., Xue, C., & Swennen, R. (2022). Petrographic and geochemical characteristics of deep-lacustrine organic-rich mudstone and shale of the Upper Triassic Chang 7 member in the southern ordos Basin, northern China: Implications for shale oil exploration. Journal of Asian Earth Sciences, 227, 105118. https://doi.org/10.1016/j.jseaes.2022.105118
  • Wang, D., Zheng, Z., Ma, Q., Hu, P., Huang, X., & song, Y. (2020). Effects of the errors between core heterogeneity and the simplified models on numerical modeling of CO2/water core flooding. International Journal of Heat and Mass Transfer, 149, 119223. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119223
  • Wang, L., He, Y., Peng, X., Deng, H., Liu, Y., & Xu, W. (2020). Pore structure characteristics of an ultradeep carbonate gas reservoir and their effects on gas storage and percolation capacities in the Deng IV member, Gaoshiti-Moxi Area, Sichuan Basin, SW China. Marine and Petroleum Geology, 111, 44–65. https://doi.org/10.1016/j.marpetgeo.2019.08.012
  • Wang, X., Zhang, Z., Gong, R., & Wang, S. (2021). Pore network modeling of oil-water flow in Jimsar Shale oil reservoir. Frontiers in Earth Science, 9, 699. https://doi.org/10.3389/feart.2021.738545
  • Wang, G., Liu, S., Yang, D., & Fu, M. (2022). Numerical study on the in-situ pyrolysis process of steeply dipping oil shale deposits by injecting superheated water steam: A case study on Jimsar oil shale in Xinjiang, China. Energy, 239, 122182. https://doi.org/10.1016/j.energy.2021.122182
  • Zakirov, T. R., & Khramchenkov, M. G. (2020). Simulation of two-phase fluid flow in the digital model of a pore space of sandstone at different surface tensions. Journal of Engineering Physics and Thermophysics, 93(3), 733–742. https://doi.org/10.1007/s10891-020-02173-w
  • Zhang, H., Abderrahmane, H., Al Kobaisi, M., & Sassi, M. (2021). Pore-Scale characterization and PNM simulations of multiphase flow in carbonate rocks. Energies, 14(21), 6897. https://doi.org/10.3390/en14216897
  • Zhang, W., Feng, Q., Wang, S., Zhang, J., Jin, Z., Xia, T., Lv, P., & Lv, P. (2022). Pore network modeling of oil and water transport in nanoporous shale with mixed wettability. Journal of Petroleum Science and Engineering, 209, 109884. https://doi.org/10.1016/j.petrol.2021.109884