2,563
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mapping of ferric (Fe3+) and ferrous (Fe2+) iron oxides distribution using ASTER and Landsat 8 OLI data, in Negash Lateritic iron deposit, Northern Ethiopia

, , ORCID Icon &
Received 31 May 2022, Accepted 26 Sep 2022, Published online: 11 Oct 2022

References

  • Aboelkhair, H., Ninomiya, Y., Watanabe, Y., & Sato, I. (2011). Processing and interpretation of ASTER TIR data for mapping of rare-metal-enriched albite granitoids in the central eastern desert of Egypt. Journal of African Earth Sciences, 58,141–151.
  • Adams, J.B.J.R.G.A.E., & Composition, M. (1993). Imaging spectroscopy: (pp. 145–166). Interpretation based on spectral mixture analysis.
  • Azizi, M., & Saibi, H. (2015). Integrating gravity data with remotely sensed data for structural investigation of the Aynak-Logar Valley, eastern Afghanistan, and the surrounding area. IEEE J. Selected Top. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(2), 816–824. https://doi.org/10.1109/JSTARS.2014.2347375
  • Azizi, M., Saibi, H., & Cooper, G. R. J. (2015). Mineral and structural mapping of the Aynak-Logar Valley (Eastern Afghanistan) from hyperspectral remote sensing data and aeromagnetic data. Arabian Journal of Geosciences, 8(12), 10911–10918. https://doi.org/10.1007/s12517-015-1993-2
  • Azizi, H., Tarverdi, M. A., & Akbarpour, A. (2010). Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran. Advances in Space Research, 46(1), 99–109. https://doi.org/10.1016/j.asr.2010.03.014
  • Bedini, E. (2011). Mineral mapping in the kap simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Advances in Space Research, 47(1),60–73. https://doi.org/10.1016/j.asr.2010.08.021
  • Bekele, N. K., Hailu, B. T., & Suryabhagavan, K. V. (2022). Spatial patterns of urban blue-green landscapes on land surface temperature: A case of Addis Ababa, Ethiopia. Current Research in Environmental Sustainability, 4,100146. https://doi.org/10.1016/j.crsust.2022.100146
  • Bersi, M., Saibi, H., & Chabou, M. C. (2016). Aerogravity and remote sensing observations of an iron deposit in Gara Djebilet, southwestern Algeria. Journal of African Earth Sciences, 116,134–150. https://doi.org/10.1016/j.jafrearsci.2016.01.004
  • Boardman, J. W. (1993). Automated spectral unmixing of AVIRIS data using convex geometry concepts, in Proc. Summ. 4th JPL Airborne Geosci. Workshop, vol 1, 1114, , vol 1, 1114, JPL Publication 93−26.
  • Boardman, J. W., & Kruse, F. A. (2011). Analysis of imaging spectrometer data using $N$-Dimensional geometry and a mixture-tuned matched filtering approach. IEEE Transactions on Geoscience and Remote Sensing, 49(11), 4138–4152. https://doi.org/10.1109/TGRS.2011.2161585
  • Boardman, J. W., Kruse, F. A., & Green, R. O. (1995). Mapping target signatures via partial unmixing of AVIRIS data, in Proc. Summ. 5th Annu. JPL Airborne Earth Sci. Workshop, 23–26.
  • Calin, M. A., Coman, T., Parasca, S. V., Bercaru, N., Savastru, R. S., & Manea, D. (2015). Hyperspectral imaging-based wound analysis using mixture-tuned matched filtering classification method. Journal of Biomedical Optics, 20(4), 046004. https://doi.org/10.1117/1.JBO.20.4.046004
  • Cardoso-Fernandes, J., Teodoro, A. C., & Lima, A. (2019). Remote sensing data in lithium (Li) exploration: A new approach for the detection of Li-bearing pegmatites. International Journal of Applied Earth Observation and Geoinformation, 76, 10–25. https://doi.org/10.1016/j.jag.2018.11.001
  • Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys (CSUR), 41(3), 1–58. https://doi.org/10.1145/1541880.1541882
  • Chen, X., Mao, J., & Tian, H. J. S. (2020). Analysis of China’s iron trade Flow: Quantity, value and regional pattern. Sustainability, 12(24), 10427. https://doi.org/10.3390/su122410427
  • Clark, R. N., & Roush, T. L. (1984). Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research, 89, 6329–6340.
  • Clark, R. N., Swayze, G. A., Heidebrecht, K., Green, R. O., & Goetz, A. F. H. (1995). Calibration to surface reflectance of terrestrial imaging spectrometry data: Comparison of methods: Summaries of the fifth annual JPL airborne Earth science workshop. JPL Publication.
  • Cloutis, E. A. (1996). Review article hyperspectral geological remote sensing: Evaluation of analytical techniques. International Journal of Remote Sensing, 17(12), 2215–2242. https://doi.org/10.1080/01431169608948770
  • de Morais, M. C., Martins, P. P., Júnior, & Paradella, W. R. Multi-scale approach using remote sensing images to characterize the iron deposit N1 influence areas in Carajás Mineral Province (Brazilian Amazon). (2012). Environmental Earth Sciences, 66(7), 2085–2096. 2012. https://doi.org/10.1007/s12665-011-1434-9
  • Elsayed, Z. K. A., El-Nadi, A. H. H., & Babiker, I. S. (2020). Prospecting for gold mineralization with the use of remote sensing and GIS technology in North Kordofan State, central Sudan. Scientific African, 10, e00627. https://doi.org/10.1016/j.sciaf.2020.e00627
  • El Zalaky, M. A., Essam, M. E., & El Arefy, R. A. (2018). Assessment of band ratios and feature-oriented principal component selection (FPCS) techniques for iron oxides mapping with relation to radioactivity using landsat 8 at Bahariya Oasis. Egypt Res, 10(4), 1–10. https://doi.org/10.7537/marsrsj100418.01
  • EMD. (2011). (Ezana mining development), Mineral resource estimate and technical report on iron deposit of ShireMentebteb area, Northwestern of Tigray region, Ethiopia.
  • Fakhari, S., Jafarirad, A., Afzal, P., & Lotfi, M. (2019). Delineation of hydrothermal alteration zones for porphyrysystems utilizing ASTER data in Jebal-Barez area, SE Iran. Iranian Journal of Earth Sciences, 11(1), 80–92. https://doi.org/10.30495/ijes.2019.664780
  • Fantaye, A. (2009). Mapping hydrothermally altered rocks and lineament analysis through digital enhancement of aster data case study: Kemashi area. Addis Ababa University.
  • Foody, G. M. (2002). The role of soft classification techniques in the refinement of estimates of ground control point location. Photogrammetric Engineering and Remote Sensing, 68(9), 897–904. http://eprints.soton.ac.uk/id/eprint/14895
  • Gad, S., & Kusky, T. (2006). Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). Journal of African Earth Sciences, 44(2), 196–202. https://doi.org/10.1016/j.jafrearsci.2005.10.014
  • Gad, S., & Kusky, T. (2007). ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Research, 11(3), 326–335. https://doi.org/10.1016/j.gr.2006.02.010
  • Galvao, L. S., Formaggio, A. R., & Tisot, D. A. (2005). Discrimination of sugarcane varieties in Southeastern Brazil with EO-1 Hyperion data. Remote Sensing of Environment, 94(4), 523–534. https://doi.org/10.1016/j.rse.2004.11.012
  • Gebresilassie, S., Bheemalingeswara, K., & Fiseha, A. (2012). Geology and characteristics of meta-limestone-hosted iron deposit near Negash, Tigray and northern Ethiopia. International Journal of Earth Sciences and Engineering, 5(6), 1535–1544.
  • Gopinathan, P., Parthiban, S., Magendran, T., Al-Quraishi, A. M. F., Singh, A. K., & Singh, P. K. (2020). Mapping of ferric (Fe3+) and ferrous (Fe2+) iron oxides distribution using band ratio techniques with ASTER data and geochemistry of Kanjamalai and Godumalai. Tamil Nadu, South India, 18, 100306. https://doi.org/10.1016/j.rsase.2020.100306
  • Govil, H., Gill, N., Rajendran, S., Santosh, M., & Kumar, S. (2018). Identification of new base metal mineralization in Kumaon Himalaya, India, using hyperspectral remote sensing and hydrothermal alteration. Ore Geology Reviews, 92, 271–283. https://doi.org/10.1016/j.oregeorev.2017.11.023
  • Guha, A., Kumar, K. V., Rao, E. N. D., & Parveen, R. (2014). An image processing approach for converging ASTER-derived spectral maps for mapping Kolhan limestone, Jharkhand, India. Current Science, 106(1), 2–11. https://doi.org/10.18520/CS/V106/I1/40-49
  • Guha, A., Singh, V. K., Parveen, R., Kumar, K. V., Jeyaseelan, A. T., & Dhanamjaya Rao, E. N. (2013). Analysis of ASTER data for mapping bauxite rich pockets within high altitude lateritic bauxite, Jharkhand, India. International Journal of Applied Earth Observation and Geoinformation: ITC Journal, 21,184–194. https://doi.org/10.1016/j.jag.2012.08.003
  • Guha, A., Yamaguchi, Y., Chatterjee, S., Rani, K., & Vinod Kumar, K. (2019). Emittance spectroscopy and broadband thermal remote sensing applied to phosphorite and its utility in geoexploration: A study in the parts of Rajasthan, India. Remote Sensing, 11(9), 1003. https://doi.org/10.3390/rs11091003
  • Haldar, S. K. (2018). Mineral exploration: Principles and applications. Elsevier. https://doi.org/10.1016/C2017-0-00902-3
  • Hewson, R. D., Cudahy, T. J., Mizuhiko, S., Ueda, K., & Mauger, A. J. (2005). Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia. Remote Sensing of Environment, 99(1-2),159–172. https://doi.org/10.1016/j.rse.2005.04.025
  • Hosseinjani, M., & Tangestani, M. H. (2011). Mapping alteration minerals using sub-pixel unmixing of ASTER data in the Sarduiyeh area, SE Kerman, Iran. International Journal of Digital Earth, 4(6), 487–504. https://doi.org/10.1080/17538947.2010.550937
  • Kalinowski, A., & Oliver, S. (2004). ASTER mineral index processing manual. Remote Sensing Applications. Geoscience Australia, 37, 1–36.
  • Kaufmann, H., Segl, K., Guanter, L., Chabrillat, S., Hofer, S., Bach, H., Hostert, P., Müller, A., & Chlebek, C. (2009). Review of EnMAP scientific potential and preparation phase. 6th EARSeL SIG IS Workshop.
  • Kumar, C., Chatterjee, S., Oommen, T., & Guha, A. (2020). Automated lithological mapping by integrating spectral enhancement techniques and machine learning algorithms using AVIRIS-NG hyperspectral data in Gold-bearing granite-greenstone rocks in Hutti, India. International Journal of Applied Earth Observation and Geoinformation, 86, 102006. https://doi.org/10.1016/j.jag.2019.102006
  • Magendrana, T., & Sanjeevi, S. (2014). Hyperion image analysis and linear spectral unmixing to evaluate the grades of iron ores in parts of Noamundi, Eastern India. International Journal of Applied Earth Observation and Geoinformation, 26, 413–426. https://doi.org/10.1016/j.jag.2013.09.004
  • Mars, J. C., & Rowan, L. C. (2010). Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals. Remote Sensing of Environment, 114(9),2011–2025. https://doi.org/10.1016/j.rse.2010.04.008
  • Masoumi, F., Eslamkish, T., Honarmand, M., & Abkar, A. A. (2017). A comparative study of Landsat‐7 and Landsat‐8 data using image processing methods for hydrothermal alteration mapping. Resource Geology, 67(1), 72–88. https://doi.org/10.1111/rge.12117
  • Mogren, S., Saibi, H., Mukhopadhyay, M., Gottsmann, J., & Ibrahim, E. (2017). Analyze the spatial distribution of lava flows in Al-Ays Volcanic Area, Saudi Arabia, using remote sensing. Arabian Journal of Geosciences, 10(6), 133. https://doi.org/10.1007/s12517-017-2889-0
  • Mohamed, M. T. A., Al-Naimi, L. S., Mgbeojedo, T. I., & Agoha, C. C. (2021). Geological mapping and mineral prospectivity using remote sensing and GIS in parts of Hamissana, Northeast Sudan. Journal of Petroleum Exploration and Production Technology, 11(3), 1123–1138. https://doi.org/10.1007/s13202-021-01115-3
  • Nabilou, M., Arian, M., Afzal, P., Adib, A., & Kazemi, A. (2018). Determination of relationship between basement faults and alteration zones in Bafq-Esfordi region, central Iran. Episodes Journal of International Geoscienc, 41(3), 143–159. https://doi.org/10.18814/epiiugs/2018/018013
  • Ni, L., Xu, H., & Zhou, X. (2020). Mineral identification and mapping by synthesis of Hyperspectral VNIR/SWIR and Multispectral TIR remotely sensed data with different classifiers, in IEEE. Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3155–3163. https://doi.org/10.1109/JSTARS.2020.2999057
  • Omer, E. A. H., & Elsayed Zeinelabdein, K. A. (2018). Digital image processing of Landsat 8 and spectral analysis of ASTER data for mapping alteration minerals, Southern Hamisana, NE Sudan. Al Neelain. Journal of Geosciences, 2(1), 10–20. http://hdl.handle.net/123456789/13555.
  • Osinowo, O. O., Gomy, A., & Isseini, M. (2021). Mapping hydrothermal alteration mineral deposits from Landsat 8 satellite data in Pala, Mayo Kebbi Region, Southwestern Chad. Scientific African, 11, e00687. https://doi.org/10.1016/j.sciaf.2020.e00687
  • Pal, S. K., Majumdar, T. J., Bhattacharya, A. K., & Bhattacharyya, R. (2011). Utilization of Landsat ETM+ data for mineral-occurrences mapping over Dalma and Dhanjori, Jharkhand, India: An advanced spectral analysis approach. International Journal of Remote Sensing, 32(14), 4023–4040. https://doi.org/10.1080/01431161.2010.484430
  • Pour, A. B., & Hashim, M. (2012). The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geology Reviews, 44, 1–9. https://doi.org/10.1016/j.oregeorev.2011.09.009
  • Pour, A. B., Hashim, M., Hong, J. K., & Park, Y. (2019). Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula, Ore Geology Reviews, 108, 112–133. http://dx.doi.org/10.1016/j.oregeorev.2017.07.018
  • Pour, A. B., Hashim, M., & Marghany, M. (2011). Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran. International Journal of the Physical Sciences, 6(4), 917–929. https://doi.org/10.5897/IJPS10.510
  • Pour, A. B., Hashim, M., Park, Y., & Hong, J. K. (2018). Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data. Geocarto International, 33(12), 1281–1306. https://doi.org/10.1080/10106049.2017.1347207
  • Qiu, F., Abdelsalam, M., & Thakkar, P. (2006). Spectral analysis of ASTER data covering part of the Neoproterozoic Allaqi-Heiani suture, Southern Egypt. Journal of African Earth Sciences, 44(2), 169–180. https://doi.org/10.1016/j.jafrearsci.2005.10.009
  • Rajendran, S., Al-Khirbash, S., Pracejus, B., Nasir, S., Al-Abri, A. H., Kusky, T. M., & Ghulam, A. (2012). ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy. Ore Geology Reviews, 44, 121–135. https://doi.org/10.1016/j.oregeorev.2011.09.010
  • Rajendran, S., Nasir, S., Kusky, T. M., Ghulam, A., Gabr, S., & El-Ghali, M. A. (2013). Detection of hydrothermal mineralized zones associated with listwaenites in Central Oman using ASTER data. Ore Geology Reviews, 53, 470–488. https://doi.org/10.1016/j.oregeorev.2013.02.008
  • Ranjbar, H., Honarmand, M., & Moezifar, Z. (2004). Application of the Crosta technique for porphyry copper alteration mapping, using ETM+ data in the southern part of the Iranian volcanic sedimentary belt. Journal of Asian Earth Sciences, 24(2), 237–243. https://doi.org/10.1016/j.jseaes.2003.11.001
  • Saadi, N., Aboud, E., Saibi, H., & Watanabe, K. (2008a). Integrating data from remote sensing, geology and gravity for geological investigation in the Tarhunah area, northwest Libya. International Journal of Digital Earth, 1(4), 347–366. https://doi.org/10.1080/17538940802435844
  • Saadi, N., Watanabe, K., Imai, A., & Saibi, H. (2008b). Integrating potential fields with remote sensing data for geological investigations in the Eljufra area of Libya. Earth, Planets and Space, 60(6), 539–547. https://doi.org/10.1186/BF03353116
  • Saed, S., Azizi, H., Daneshvar, N., Peyman Afzal, P., Whattam, S. A., & Mohammad, Y. O. (2022). Hydrothermal alteration mapping using ASTER data, Takab-Baneh area, NW Iran: A key for further exploration of polymetal deposits. Geocarto International. https://doi.org/10.1080/10106049.2022.2059110
  • Saibi, H., Bersi, M., Mia, M. B., Saadi, N. M., Al Bloushi, K. M. S., & Akavian, R. W. (2018). Applications of remote sensing in Geosciences. In M.-C. Hung & Y.-H. Wu (Eds.), Recent Advances and Applications in Remote Sensing Book, Intech Edition (pp. 181–203). (Chapter 9).
  • San, B. T., Sumer, E. O., & Gurcay, B. (2004). Comparison of band ratioing and spectral indices methods for detecting alunite and kaolinite minerals using ASTER data in Biga region, Turkey. In Proceedings ISPRS.
  • Schubert, G. (2015). Treatise on geophysics. Elsevier.
  • Settle, J. J. (2006). On the effect of variable endmember spectra in the linear mixture model, IEEE. IEEE Transactions on Geoscience and Remote Sensing, 44(2), 389–396. https://doi.org/10.1109/TGRS.2005.860983
  • Shaik, I., Begum, S. K., Nagamani, P. V., & Kayet, N. (2021). Characterization and mapping of hematite ore mineral classes using hyperspectral remote sensing technique: A case study from Bailadila iron ore mining region. SN Applied Sciences, 3(2), 182. https://doi.org/10.1007/s42452-021-04213-3
  • Shi, C., & Wang, L. (2014). Incorporating spatial information in spectral unmixing: A review. Remote Sensing of Environment, 149, 70–87. https://doi.org/10.1016/j.rse.2014.03.034
  • Shi, C., & Wang, L. (2016). Linear Spatial Spectral Mixture Model. IEEE Transactions on Geoscience and Remote Sensing, 54(6), 1–13. https://doi.org/10.1109/TGRS.2016.2520399
  • Tadesse, S. (2009). Mineral resources potential of Ethiopia. Addis Ababa University Press.
  • Tompolidi, A.-M., Sykioti, O., Koutroumbas, K., & Parcharidis, I. (2020). Spectral unmixing for mapping a hydrothermal field in a volcanic environment applied on ASTER, Landsat-8/OLI, and Sentinel-2 MSI satellite multispectral data: The Nisyros (Greece) case study. Remote Sensing, 12(24), 4180. https://doi.org/10.3390/rs12244180
  • Transon, J. D., Andrimont, R., Maugnard, A., & Defourny, P. (2018). Survey of hyperspectral earth observation applications from space in the sentinel-2 context. Remote Sensing, 10(3), 157. https://doi.org/10.3390/rs10020157
  • Traore, M., Çan, T., & Tekin, S. (2019). Discrimination of iron deposits using feature-oriented principal component selection and band ratio methods: Eastern Taurus/Turkey. International Symposium on Applied Geoinformatics, ISAG2019 was held in Istanbul on, 9.
  • Van der Meer, F. D., Van der Werff, H. M., Van Ruitenbeek, F. J., Hecker, C. A., Bakker, W. H., Noomen, M. F., Van Der Meijde, M., Carranza, E. J. M., De Smeth, J. B., & Woldai, T. (2012). Multi-and hyperspectral geologic remote sensing: A review. International Journal of Applied Earth Observation and Geoinformation, 14(1), 112–128. https://doi.org/10.1016/j.jag.2011.08.002
  • Wambo, J. D. T., Pour, A. B., Ganno, S., Asimow, P. D., Zoheir, B., Dos Reis Salles, R., Nzenti, J. P., Pradhan, B., & Muslim, A. M. (2020). Identifying high potential zones of gold mineralization in a sub-tropical region using Landsat-8 and ASTER remote sensing data: A case study of the Ngoura-Colomines goldfield, eastern Cameroon. Ore Geology Reviews, 122, 103530. https://doi.org/10.1016/j.oregeorev.2020.103530
  • Winter, M. E. (2000). Comparison of approaches for determining end-members in hyperspectral data. IEEE Aerospace Conference. Proceedings (Cat. No. 00TH8484): IEEE, 305–313.
  • Yazdi, Z., Rad, J. A., Aghazadeh, M., & Afzal, P. (2018). Alteration mapping for porphyry copper exploration using ASTERand QuickBird multispectral images, sonajeel prospect, NW Iran. Journal of the Indian Society of Remote Sensing, 46(10), 1581–1593. https://doi.org/10.1007/s12524-018-0811-1
  • Zamyad, M., Afzal, P., Pourkermani, M., Nouri, R., & Jafari, M. R. (2019). Determination of hydrothermal alteration zones using remote sensing methods in Tirka area, Toroud, NE Iran. J Indian Soc Rem. Sens.Arab. J. Geosci.IEEE J. Selected Top. Appl. Earth Observ. Arabian Journal of Geosciences, 47, 1817–1830. https://doi.org/10.1007/s12524-019-01032-3
  • Zhou, Z. G., Tang, P., & Zhou, M. (2016). Detecting anomaly regions in satellite image time series based on seasonal autocorrelation analysis. ISPRS Annals of the Photogrammetry. Remote Sensing and Spatial Information Sciences, 3, 303. https://doi.org/10.5194/isprs-annals-III-3-303-2016