222
Views
0
CrossRef citations to date
0
Altmetric
Research article

Assessment of land use transformations and its impact on fluctuations in groundwater quality in Chengalpattu district, Tamil Nadu

ORCID Icon, , , , , & show all
Received 10 Nov 2023, Accepted 23 Jun 2024, Published online: 08 Jul 2024

References

  • Ahmad, W., Iqbal, J., Nasir, M. J., Ahmad, B., Khan, M. T., Khan, S. N., & Adnan, S. (2021). Impact of land use/land cover changes on water quality and human health in district Peshawar Pakistan. Scientific Reports, 11(1), 16526. https://doi.org/10.1038/s41598-021-96075-3
  • Anjum, R., Ali, S. A., Siddiqui, M. A., Parvin, F., Khan, Z., Khan, N., Khanam, Z., & Nafees, M. (2023). Hydro-geochemical assessment of ground water for drinking and agricultural purposes and potential human health risk in Aligarh city, India. Chemical Engineering Journal Advances, 16, 100547. https://doi.org/10.1016/j.ceja.2023.100547
  • Aryafar, A., Khosravi, V., & Karami, S. (2020). Groundwater quality assessment of Birjand plain aquifer using kriging estimation and sequential Gaussian simulation methods. Environmental Earth Sciences, 79(10), 1–21. https://doi.org/10.1007/s12665-020-08905-8
  • Babiker, I. S., Mohamed, M. A., & Hiyama, T. (2007). Assessing groundwater quality using GIS. Water Resources Management, 21(4), 699–715. https://doi.org/10.1007/s11269-006-9059-6
  • Bera, A., Mukhopadhyay, B. P., & Das, S. (2022). Groundwater vulnerability and contamination risk mapping of semi-arid Totko river basin, India using GIS-based DRASTIC model and AHP techniques. Chemosphere, 307, 135831. https://doi.org/10.1016/j.chemosphere.2022.135831
  • Bhaskaran, P., & Abraham, M. (2022). Evaluation of groundwater quality and heavy metal pollution index of the industrial area. Chennai, Physics and Chemistry of Earth, Parts A/B/C, 128.
  • Brindha, K., & Elango, L. (2014). PAHs contamination in groundwater from a part of metropolitan city, India: A study based on sampling over a 10-year period. Environmental Earth Sciences, 71(12), 5113–5120. https://doi.org/10.1007/s12665-013-2914-x
  • Census of India. (2011). National population register & socio economic and caste census.
  • Chakraborti, D., Das, B., & Murrill, M. T. (2011). Examining India’s groundwater quality management. Environmental Science & Technology, 45(1), 27–33. https://doi.org/10.1021/es101695d
  • Dube, T., Shoko, C., Sibanda, M., Baloyi, M. M., Molekoa, M., Nkuna, D., Rafapa, B. M., & Rampheri, B. M. (2020). Spatial modelling of groundwater quality across a land use and land cover gradient in Limpopo Province, South Africa. Physics and Chemistry of the Earth, Parts A/B/C, 115, 102820. https://doi.org/10.1016/j.pce.2019.102820
  • Elmahdy, S. I., Ali, T. A., Mohamed, M. M., Howari, F. M., Abouleish, M., & Simonet, D. (2020). Spatiotemporal mapping and monitoring of mangrove forests changes from 1990 to 2019 in the Northern Emirates, UAE using random forest, Kernel Logistic Regression and Naive Bayes Tree Models. Frontiers in Environmental Science, 8, 102. https://doi.org/10.3389/fenvs.2020.00102
  • Foody, G. M., & Mathur, A. (2004). Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sensing of Environment, 93(1–2), 107–117. https://doi.org/10.1016/j.rse.2004.06.017
  • Gardner, K. K., & Vogel, R. M. (2005). Predicting ground water nitrate concentration from land use. Groundwater, 43(3), 343–352. https://doi.org/10.1111/j.1745-6584.2005.0031.x
  • Ground water year – India. (2011-2012). https://gwb.gov.in/cgwbpnm/public/uploads/documents/16856170651359015834file.pdf
  • He, S., & Wu, J. (2019). Hydrogeochemical characteristics, groundwater quality, and health risks from hexavalent chromium and nitrate in groundwater of Huanhe formation in Wuqi County, northwest China. Exposure and Health, 11(2), 125–137. https://doi.org/10.1007/s12403-018-0289-7
  • Huang, C., Davis, L. S., & Townshend, J. R. G. (2002). An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 23(4), 725–749. https://doi.org/10.1080/01431160110040323
  • Ijioma, U. D. (2021). Delineating the impact of urbanization on the hydrochemistry and quality of groundwater wells in Aba, Nigeria. Journal of Contaminant Hydrology, 240, 103792. https://doi.org/10.1016/j.jconhyd.2021.103792
  • India. (2011). https://censusindia.gov.in/nada/index.php/catalog/42619
  • Ismail, S., Ahmed, M. F., & Bakar, M. Z. A. (2023). Assessing the impact of urbanization on groundwater quality of lahore region, Pakistan. Environmental Science and Pollution Research, 30(35), 1–21. https://doi.org/10.1007/s11356-023-28400-4
  • Khan, H. H., Khan, A., Ahmed, S., & Perrin, J. (2011). GIS-based impact assessment of land-use changes on groundwater quality: Study from a rapidly urbanizing region of South India. Environmental Earth Sciences, 63(6), 1289–1302. https://doi.org/10.1007/s12665-010-0801-2
  • Khan, R., & Jhariya, D. C. (2018). Assessment of land-use and land-cover change and its impact on groundwater quality using remote sensing and GIS techniques in Raipur City, Chhattisgarh, India. Journal of the Geological Society of India, 92(1), 59–66. https://doi.org/10.1007/s12594-018-0953-3
  • Kumar, A., & Krishna, A. P. (2021). Groundwater quality assessment using geospatial technique based water quality index (WQI) approach in a coal mining region of India. Arabian Journal of Geosciences, 14(12), 1126. https://doi.org/10.1007/s12517-021-07474-9
  • Kurniawan, T. A., Lo, W., Liang, X., Goh, H. H., Othman, M. H. D., Chong, K. K., & Chew, K. W. (2023). Remediation technologies for contaminated groundwater due to arsenic (as), mercury (hg), and/or fluoride (F): A critical review and way forward to contribute to carbon neutrality. Separation and Purification Technology, 314, 123474. https://doi.org/10.1016/j.seppur.2023.123474
  • Lerner., D. N., & Harris, B. (2009). The relationship between land use and groundwater resources and quality. Landuse Policy, 26(Supplement 1), S265–S273.
  • Liaqat, M. U., Mohamed, M. M., Chowdhury, R., Elmahdy, S. I., Khan, Q., & Ansari, R. (2021). Impact of land use/land cover changes on groundwater resources in Al Ain region of the United Arab Emirates using remote sensing and GIS techniques. Groundwater for Sustainable Development, 14, 100587. https://doi.org/10.1016/j.gsd.2021.100587
  • Lü, X., Han, Z., Li, H., Zheng, Y., & Liu, J. (2022). Influence of urbanization on groundwater chemistry at Lanzhou valley basin in China. Minerals, 12(3), 385. https://doi.org/10.3390/min12030385
  • MacDonald, A. M., Bonsor, H. C., Ahmed, K. M., Burgess, W. G., Basharat, M., Calow, R. C., Dixit, A., Foster, S. S. D., Gopal, K., Lapworth, D. J., Lark, R. M., Moench, M., Mukherjee, A., Rao, M. S., Shamsudduha, M., Smith, L., Taylor, R. G., Tucker, J., van Steenbergen, F., & Yadav, S. K. (2016). Groundwater quality and depletion in the Indo-gangetic basin mapped from in situ observations. Nature Geoscience, 9(10), 762–766. https://doi.org/10.1038/ngeo2791
  • Martín Del Campo, M. A., Esteller, M. V., Expósito, J. L., & Hirata, R. (2014). Impacts of urbanization on groundwater hydrodynamics and hydrochemistry of the Toluca Valley aquifer (Mexico). Environmental Monitoring and Assessment, 186(5), 2979–2999. https://doi.org/10.1007/s10661-013-3595-3
  • Maxwell, A. E., Warner, T. A., & Fang, F. (2018). Implementation of machine-learning classification in remote sensing: An applied review. International Journal of Remote Sensing, 39(9), 2784–2817. https://doi.org/10.1080/01431161.2018.1433343
  • Obaid, A. N., & Mohammed, M. J. (2020). A comparison of topological kriging and area to point kriging for irregular district area in Iraq. Journal of Mechanics of Continua and Mathematical Sciences, 15(4). https://doi.org/10.26782/jmcms.2020.04.00009
  • Panno, S. V., Luman, D. E., & Kolata, D. R. (2015). Characterization of karst terrain and regional tectonics using remotely sensed data in Jo Daviess County, Illinois. Circular No. 589.
  • Radouane, E. M., Chahlaoui, A., Maliki, A., & Boudellah, A. (2023). Assessment and modeling of groundwater quality by using water quality index (WQI) and GIS technique in meknes aquifer (Morocco). Geology, Ecology, and Landscapes, 7(2), 126–138. https://doi.org/10.1080/24749508.2021.1944797
  • Rao, P. N., Prasad, K. M., Madhusudhan, B. J., Krishna, V. S. R., Anand, A. V. S. S., & Madhnure, P. (2016). Impact of urbanization on groundwater quality in Vijayawada urban agglomeration, the new capital region of Andhra Pradesh, India–A baseline study. Journal of the Geological Society of India, 87(5), 539–552. https://doi.org/10.1007/s12594-016-0428-3
  • Reynolds-Vargas, J., Fraile-Merino, J., & Hirata, R. (2006). Trends in nitrate concentrations and determination of its origin using stable isotopes (18O and 15N) in groundwater of the western Central Valley, Costa Rica. Ambio: A Journal of the Human Environment, 35(5), 229–236. https://doi.org/10.1579/05-R-046R1.1
  • Sajil Kumar, P. J., Jose, A., & James, E. J. (2013). Spatial and seasonal variation in groundwater quality in parts of Cuddalore District, South India. National Academy Science Letters, 36(2), 167–179. https://doi.org/10.1007/s40009-013-0115-5
  • Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577–1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x
  • Singh, Y. P., Singh, G., Mishra, V. K., & Arora, S. (2018). Evaluating multipurpose tree species for biomass production and amelioration of sodic soil. Journal of the Indian Society of Soil Science, 66(4), 399. https://doi.org/10.5958/0974-0228.2018.00050.6
  • Sridhar, S. G. D., Sakthivel, A. M., Sangunathan, U., Balasubramanian, M., Jenefer, S., Mohamed Rafik, M., & Kanagaraj, G. (2017). Heavy metal concentration in groundwater from Besant Nagar to Sathankuppam, South Chennai, Tamil Nadu, India. Applied Water Science, 7(8), 4651–4662. https://doi.org/10.1007/s13201-017-0628-z
  • Srivastava, P. K., Mukherjee, S., Gupta, M., & Singh, S. K. (2011). Characterizing monsoonal variation on water quality index of river mahi in India using geographical information system. Water Quality, Exposure and Health, 2(3–4), 193–203. https://doi.org/10.1007/s12403-011-0038-7
  • Torres-Martínez, J. A., Mora, A., Knappett, P. S., Ornelas-Soto, N., & Mahlknecht, J. (2020). Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a Bayesian isotope mixing model. Water Research, 182, 115962. https://doi.org/10.1016/j.watres.2020.115962
  • United Nations. (2023). Water Conference. https://www.unep.org/un-2023-water-conference
  • Xue, D., Botte, J., De Baets, B., Accoe, F., Nestler, A., Taylor, P., Van Cleemput, O., Berglund, M., & Boeckx, P. (2009). Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Research, 43(5), 1159–1170. https://doi.org/10.1016/j.watres.2008.12.048
  • Zhang, Q., & Wang, H. (2020). Assessment of sources and transformation of nitrate in the alluvial-pluvial fan region of north China using a multi-isotope approach. Journal of Environmental Sciences, 89, 9–22. https://doi.org/10.1016/j.jes.2019.09.021