2,910
Views
2
CrossRef citations to date
0
Altmetric
Articles

Influence of temperature on reproduction and length of metamorphosis in Xenopus laevis (Amphibia: Anura)

, , &
Pages 150-157 | Received 08 Nov 2017, Accepted 27 Feb 2018, Published online: 10 Apr 2018

References

  • Amaya E, Offield M, Grainger RM. 1998. Frog genetics: Xenopus tropicalis jumps into the future. Trends in Genetics 14:253–255.
  • Bewick AJ, Anderson DW, Evans BJ. 2011. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution 65:698–712.
  • Brown DD. 2004. A tribute to the Xenopus laevis oocyte and egg. Journal of Biological Chemistry 279:45291–45299.
  • Cannatella D. 2015. Xenopus in space and time: Fossils, node calibrations, tip-dating, and paleobiogeography. Cytogenetic and Genome Research 145:283–301.
  • De Busschere C, Courant J, Herrel A, Rebelo R, Rödder D, Measey GJ, Backeljau T. 2016. Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe. PeerJ 4:e1659.
  • Evans BJ, Carter TF, Greenbaum E, Gvoždík V, Kelley DB, McLaughlin PJ, Pauwels OSG, Portik DM, Stanley EL, Tinsley RC, Tobias ML, Blackburn DC. 2015. Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from west and central Africa. PLoS One 10:e0142823.
  • Evans BJ, Kelley DB, Tinsley RC, Melnick DJ, Cannatella DC. 2004. A mitochondrial DNA phylogeny of African clawed frogs: Phylogeography and implications for polyploid evolution. Molecular Phylogenetics and Evolution 33:197–213.
  • Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A. 2002. Occurrence of phthalates and bisphenol A and Fin the environment. Water Research 36:1429–1438.
  • Godfrey EW, Sanders GE. 2004. Effect of water hardness on oocyte quality and embryo development in the African clawed frog (Xenopus laevis). Comparative Medicine 52:170–175.
  • Guerriero G, Brundo MV, Labar S, Bianchi AR, Trocchia S, Rabbito D, Palumbo G, Abdel-Gawad FK, De Maio A. 2017b. Frog (Pelophylax bergeri, Günther 1986) endocrine disruption assessment: Characterization and role of skin poly (ADP-ribose) polymerases. Environmental Science and Pollution Research International. DOI:10.1007/s11356-017-0395-2.
  • Guerriero G, D’Errico G, Di Giaimo R, Rabbito D, Olanrewaju OS, Ciarcia G. 2017a. Reactive oxygen species and glutathione antioxidants in the testis of the soil biosentinel Podarcis sicula (Rafinesque 1810). Environmental Science and Pollution Research International. DOI:10.1007/s11356-017-0098-8.
  • Guerriero G, Di Finizio A, Ciarcia G. 2003. Oxidative defenses in the sea bass, Dicentrarchus labrax. In: Dunn JF, Swartz HM, editors. Oxygen Transport to Tissue XXIV. Advences in Experimental Medicine and Biology. New York:Kluwer Academic/Plenum Plublisher. Vol. 530, pp. 681–688.
  • Guerriero G, Ferro F, Russo GL, Ciarcia G. 2004. Vitamin E in early stages of sea bass (Dicentrarchus labrax) development. Comparative Biochemistry and Physiology Patr A Molecular & Integrative Physiology 138:435–439.
  • Guerriero G, Prins GS, Birch L, Ciarcia G. 2005. Neurodistribution of androgen receptor immunoreactivity in the male frog, Rana esculenta. Annals of the New York Academy of Sciences 1040:332–336.
  • Guerriero G, Roselli CE, Ciarcia G. 2009. The amphibian (Rana esculenta) brain progesterone receptor: Relationship to plasma steroids and vitellogenic cycle during the gonadal recovery phase. Annals of the New York Academy of Sciences 1163:407–409.
  • Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, Ovcharenko I, Putnam NH, Shu S, Taher L, Blitz IL, Blumberg B, Dichmann DS, Dubchak I, Amaya E, Detter JC, Fletcher R, Gerhard DS, Goodstein D, Graves T, Grigoriev IV, Grimwood J, Kawashima T, Lindquist E, Lucas SM, Mead PE, Mitros T, Ogino H, Ohta Y, Poliakov AV, Pollet N, Robert J, Salamov A, Sater AK, Schmutz J, Terry A, Vize PD, Warren WC, Wells D, Wills A, Wilson RK, Zimmerman LB, Zorn AM, Grainger R, Grammer T, Khokha MK, Richardson PM, Rokhsar DS. 2010. The genome of the western clawed frog Xenopus tropicalis. Science 5978:633–636.
  • Hirsch N, Zimmerman LB, Grainger RM. 2002. Xenopus, the next generation: X. tropicalis genetics and genomics. Developmental Dynamics 225:422–433.
  • Ihlow F, Courant J, Secondi J, Herrel A, Rebelo R, Measey GJ, Lillo F, De Villiers FA, Vogt S, De Busschere C, Backeljau T, Rödder D. 2016. Impacts of climate change on the global invasion potential of the African Clawed Frog Xenopus laevis. PLoS One 11:1–19.
  • Klein SL, Strausberg RL, Wagner L, Pontius J, Clifton SW, Richardson P. 2002. Genetic and genomic tools for Xenopus research: The NIH Xenopus initiative. Developmental Dynamics 225:384–391.
  • Kobel HR, Du Pasquier L. 1986. Genetics of polyploid Xenopus. Trends in Genetics 2:310–315.
  • Krylov V, Kubíčková S, Rubes J, Macha J, Tlapáková T, Seifertova E, Sebkova N. 2010. Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chromosome Research 18:431–439.
  • Krylov V, Tlapáková T, Macha J. 2007. Localization of the single copy gene Mdh2 on Xenopus tropicalis chromosomes by FISH-TSA. Cytogenetic and Genome Research 116:110–112.
  • Mácha J, Tlapáková T, Krylov V, Kopský V. 2003. Xstir polymorphism and absence of sex linkage in Xenopus laevis ME2 Gene. Folia Biologica 49:115–117.
  • Measey GJ, Rödder D, Green SL, Kobayashi R, Lillo F, Lobos G, Rebelo R, Thirion JM. 2012. Ongoing invasions of the African clawed frog, Xenopus laevis: A global review. Biological Invasions 14:2255–2270.
  • Nagano Y, Ode KL. 2014. Temperature-independent energy expenditure in early development of the African clawed frog Xenopus laevis. Physical Biology 11:046008.
  • O’Rourke DP. 2007. Amphibians used in research and teaching. Institute for Laboratory Animal Research Journal 48:183–187.
  • Olmstead AW, Lindberg-Livingston A, Degitz SJ. 2010. Genotyping sex in the amphibian, Xenopus (Silurana) tropicalis, for endocrine disruptor bioassays. Aquatic Toxicology 98:60–66.
  • Pollet N, Mazabraud A. 2006. Insights from Xenopus genomes. Genome Dynamics 2:138–153.
  • Roco AS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proceedings of the National Academy of Sciences 112:4752–4761.
  • Rödder D, Secondi J, Courant J, Ihlow F, Lillo F, Measey GJ, Rebelo R, Herrel A, Backeljau T, De Busschere C, De Villiers FA. 2017. Global realized niche divergence in the African clawed frog Xenopus laevis. Ecology and Evolution 7:4044–4058.
  • Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Oqino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538:336–343.
  • Smith JJ, Voss SR. 2006. Gene order data from a model amphibian (Ambystoma): New perspectives on vertebrate genome structure and evolution. BMC Genomics 29:219.
  • Smith S, Stoskopf MK. 2007. The art of amphibian science. Institute for Laboratory Animal Research Journal 38:179–182.
  • Tinsley RC, McCoid MJ. 1996. Feral populations of Xenopus outside Africa. In: Tinsley RC, Kobel HR, editors. The biology of Xenopus. Oxford: Oxford University Press. pp. 81–94.
  • Tinsley RC, Stott LC, Viney ME, Mable BK, Tinsley MC. 2015. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events. Biological Invasions 17:3183–3195.
  • Tymowska J. 1973. Karyotype analysis of Xenopus tropicalis Gray, Pipidae. Cytogenetic and Genome Research 12:297–304.
  • Vašeková P 2017. Reproduction and metamorphosis of Xenopus laevis. Thesis. Nitra: Slovak University of Agriculture Press. p. 63.
  • Wheeler GN, Brändli AW. 2009. Simple vertebrate models for chemical genetics and drug discovery screens: Lessons from zebrafish and Xenopus. Developmental Dynamics 238:1287–1308.
  • Yoshimoto S, Ito M. 2011. A ZZ/ZW-type sex determination in Xenopus laevis. The FEBS Journal 7:1020–1026.
  • Yoshimoto S, Okada E, Umemoto H, Tamura K, Uno Y, Nishida-Umehara C, Matsuda Y, Takamatsu N, Shiba T, Ito M. 2008. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proceedings of the National Academy of Sciences 105:2469–2474.