905
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Variation in erythrocyte morphology in alpine accentors (Prunella collaris Scop.) from Tian Shan, Rila and the High Tatra mountains and effects of molting

&
Pages 475-488 | Received 30 Jun 2020, Accepted 19 Aug 2020, Published online: 04 Sep 2020

References

  • Adrian GJ, Czarnoleski M, Angilletta Jr MJ. 2016. Flies evolved small bodies and cells at high or fluctuating temperatures. Ecology and Evolution 6:7991–7996. DOI: 10.1002/ece3.2534.
  • Altshuler DL, Dudley R. 2006. The physiology and biomechanics of avian flight at high altitude. Integrative and Comparative Biology 46:62–71. DOI: 10.1093/icb/icj008.
  • Arora KL, Vatsalya V. 2011. Deleterious effects of molting on the morpho-physiology of Japanese quail layers (Coturnix japonica). International Journal of Poultry Science 10:120–124. DOI: 10.3923/ijps.2011.120.124.
  • Barrett LA, Scheinberg SL. 1972. The development of avian red cell shape. Journal of Experimental Zoology 182:1–13. DOI: 10.1002/jez.1401820102.
  • Barve S, Dhondt AA, Mathur VB, Cheviron ZA. 2016. Life-history characteristics influence physiological strategies to cope with hypoxia in Himalayan birds. Proceedings of the Royal Society B 283:2016–2201. DOI: 10.1098/rspb.2016.2201.
  • Baskurt OK, Meiselman HJ 2003. Blood rheology and hemodynamics. Seminars in Thrombosis and Hemostasis 29. pp. 435–450. DOI: 10.1055/s-2003-44551.
  • Berry WD. 2003. The physiology of induced molting. Poultry Science 82:971–980. DOI: 10.1093/ps/82.6.971.
  • Boyle WA. 2008. Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia 155:397–403. DOI: 10.1007/s00442-007-0897-6.
  • Boyle WA, Sandercock BK, Martin K. 2015. Patterns and drivers of intraspecific variation in avian life history along elevational gradients: A meta-analysis. Biological Reviews 91:469–482. DOI: 10.1111/brv.12180.
  • Brake J, Thaxton P. 1979. Physiological changes in caged layers during a forced molt. 2. Gross changes in organs. Poultry Science 58:707–716. DOI: 10.3382/ps.0580707.
  • Brake J, Thaxton P, Benton EH. 1979. Physiological changes in caged layers during a forced molt. 3. Plasma thyroxin, plasma triiodothyronine, adrenal cholesterol and total adrenal steroids. Poultry Science 58:1345–1350. DOI: 10.3382/ps.0581345.
  • Breuer K, Lill A, Baldwin J. 1995. Hematological and body-mass changes of small passerines overwintering in south-eastern Australia. Australian Journal of Zoology 43:31–38. DOI: 10.1071/ZO9950031.
  • Buttemer WA, Bauer S, Emmenegger T, Dimitrov D, Peev S, Hahn S. 2019. Moult-related reduction of aerobic scope in passerine birds. Journal of Comparative Physiology B 189:463–470. DOI: 10.1007/s00360-019-01213-z.
  • Canals M, Donoso C, Figueroa D, Sabat P. 2007. Pulmonary hematological parameters, energetic flight demands and their correlation with oxygen diffusion capacity in the lungs. Revista Chilena de Historia Natural 80:275–284. DOI: 10.4067/S0716-078X2007000300002.
  • Carey C. 1994. Structural and physiological differences between montane and lowland avian eggs and embryos. Journal of Biosciences 19:429–440. DOI: 10.1007/BF02703179.
  • Carey C, Morton ML. 1976. Aspects of circulatory physiology of montane and lowland birds. Comparative Biochemistry and Physiology 54:61–74. DOI: 10.1016/S0300-9629(76)80073-4.
  • Cavalier-Smith T. 2005. Economy, speed and size matter: Evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany (London) 95:147–175. DOI: 10.1093/aob/mci010.
  • Chien S. 1987. Red cell deformability and its relevance to blood flow. Annual Review of Physiology 49:177–192. DOI: 10.1146/annurev.ph.49.030187.001141.
  • Chilgren JD, DeGraw WA. 1977. Some blood characteristics of white-crowned sparrows during molt. Auk 94:169–171. DOI: 10.1093/auk/94.1.169.
  • Conllins EG. 1912. Cell size and nuclear size. Journal of Experimental Zoology 12:1–98. DOI: 10.1002/jez.1400120102.
  • Cyr NE, Wikelski M, Romero LM. 2008. Increased energy expenditure but decreased stress responsiveness during molt. Physiological and Biochemical Zoology 81:452–462. DOI: 10.1086/589547.
  • Czarnoleski M, Cooper BS, Kierat J, Angilletta MJ. 2013. Flies developed small bodies and small cells in warm and in thermally fluctuating environments. Journal of Experimental Zoology 216:2896–2901. DOI: 10.1242/jeb.083535.
  • Czarnoleski M, Dragosz-Kluska D, Angilletta MJ. 2015. Flies developed smaller cells when temperature fluctuated more frequently. Journal of Thermal Biology 54:106–110. DOI: 10.1016/j.jtherbio.2014.09.010.
  • D´Alessandro A 2013. Red blood cell ageing in vivo and in vitro: The integrated omics perspective. PhD Thesis. Ecological and Biological Science, University of Tuscia, Viterbo, Italy. pp. 394.
  • da Costa Araújo AP, Lima VS, de Andrade Vieira JE, Mesak C, Malafaia G. 2019. First report on the mutagenicity and cytotoxicity of ZnO nanoparticles in reptiles. Chemosphere 235:556–564. DOI: 10.1016/j.chemosphere.2019.06.164.
  • Davison J. 1955. Body weight, cell surface and metabolic rate in anuran Amphibia. Biological Bulletin 109:407–419. DOI: 10.2307/1539173.
  • Dawson A. 1994. The effects of daylength and testosterone on the initiation and progress of moult in starlings, Sturnus vulgaris. Ibis 136:335–340. DOI: 10.1111/j.1474-919X.1994.tb01104.x.
  • Dawson A. 2004. The effects of delaying the start of moult on the duration of moult, primary feather growth rates and feather mass in common starlings, Sturnus vulgaris. Ibis 146:493–500. DOI: 10.1111/j.1474-919x.2004.00290.x.
  • Dawson A. 2006. Control of molt in birds: Association with prolactin and gonadal regression in starlings. General and Comparative Endocrinology 147:314–322. DOI: 10.1016/j.ygcen.2006.02.001.
  • Dawson A. 2007. Seasonality in a temperate zone bird can be entrained by near equatorial photoperiods. Proceedings of the Royal Society B 274:721–725. DOI: 10.1098/rspb.2006.0067.
  • Dawson A, Goldsmith AR. 1982. Prolactin and gonadotrophin secretion in wild starlings (Sturnus vulgaris) during the annual cycle and in relation to nesting, incubation, and rearing young. General and Comparative Endocrinology 48:213–221. DOI: 10.1016/0016-6480(82)90019-3.
  • Dawson A, Goldsmith AR. 1983. Plasma prolactin and gonadotrophins during gonadal development and the onset of photorefractoriness in male and female starlings (Sturnus vulgaris) on artificial photoperiods. Journal of Endocrinology 97:253–260. DOI: 10.1677/joe.0.0970253.
  • Dawson RD, Bortolotti GR. 1997. Are avian hematocrits indicative of condition? American kestrels as a model. Journal of Wildlife Management 61:1297–1306. DOI: 10.2307/3802129.
  • de Andrade Vieira JE, de Oliveira Ferreira R, Dos Reis Sampaio DM, da Costa Araújo AP, Malafaia G. 2019. An insight on the mutagenicity and cytotoxicity of zinc oxide nanoparticles in Gallus gallus domesticus (Phasianidae). Chemosphere 231:10–19. DOI: 10.1016/j.chemosphere.2019.05.111.
  • de Oliveira JSP, Vieira LG, Carvalho WF, de Souza MB, de Lima Rodrigues AS, Simões K, de Melo De Silva D, dos Santos Mendonca J, Luz Hirano LQ, Quagliatto Santos AL, Malafaia G 2020: Mutagenic, genotoxic and morphotoxic potential of different pesticides in the erythrocytes of Podocnemis expansa neonates. Science of The Total Environment 140304. DOI: org/10.1016/j.scitotenv.2020.140304
  • DeGraw WA, Kern MD. 1985. Changes in the blood and plasma volume of Harris’ sparrows during postnuptial molt. Comparative Biochemistry and Physiology B 8lA:889–893. DOI: 10.1016/0300-9629(85)90925-9.
  • DeGraw WA, Kern MD, King JR. 1979. Seasonal changes in blood composition of captive and free-living White-crowned Sparrows. Journal of Comparative Physiology 129B:151–162. DOI: 10.1007/BF00798180.
  • Doubek J, Bouda J, Doubek M, Fürll M, Knotková Z, Pejřilová S, Scheer P, Svobodová Z, Vodička R. 2003. Veterinární hematologie. Brno, Noviko. pp. 124–127.
  • Driver EA. 1981. Hematological and blood chemical values of mallard, Anas p. platyrhynchos, drakes before, during and after remige moult. Journal of Wildlife Diseases 17:413–421. DOI: 10.7589/0090-3558-17.3.413.
  • Dunson WA. 1965. Adaptation of heart and lung weight to high altitude in the robin. The Condor 67:215–219. DOI: 10.2307/1365399.
  • Ekblom BT. 2000. Blood boosting and sport. Baillieres Best Practice and Research Clinical Endocrinology and Metabolism 14:89–98. DOI: 10.1053/beem.2000.0056.
  • Fair J, Whitaker S, Pearson B. 2007. Sources of variation in haematocrit in birds. Ibis 149:535–552. DOI: 10.1111/j.1474-919X.2007.00680.x.
  • Gaehtgens P, Schmidt F, Will G. 1981. Comparative rheology of nucleated and non-nucleated red blood cells I. Microrheology of avian erythrocytes during capillary flow. Pflügers Archiv European Journal of Physiology 390:278–282. DOI: 10.1007/BF00658276.
  • Glomski C, Pica A. 2011. The avian erythrocyte. Its phylogenetic Odyssey. 1st ed. Boca Raton, FL: CRC Press. pp. 113–125.
  • Gregory TR. 2000. Nucleotypic effects without nuclei: Genome size and erythrocyte size in mammals. Genome 43:895–901. DOI: 10.1139/g00-069.
  • Gregory TR. 2001. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews of the Cambridge Philosophical Society 76:65–101. DOI: 10.1017/s1464793100005595.
  • Gregory TR. 2002. A bird’s-eye view of the C-value enigma: Genome size, cell size, and metabolic rate in the class Aves. Evolution 56:121–130. DOI: 10.1111/j.0014-3820.2002.tb00854.x.
  • Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. 2005. The nuclear lamina comes of age. Nature Reviews Molecular Cell Biology 6:21–31. DOI: 10.1038/nrm1550.
  • Hall KSS, Fransson T. 2001. Wing moult in relation to autumn migration in adult common whitethroats Sylvia communis communis. Ibis 143:580–586. DOI: 10.1111/j.1474-919X.2001.tb04885.x.
  • Hammond KA, Chappell MA, Cardullo RA, Lin R, Johnsen TS. 2000. The mechanistic basis of aerobic performance variation in red junglefowl. Journal of Experimental Zoology 203:2053–2064.
  • Harrison GL, Harrison LR. 1986. Clinical avian medicine and surgery. London: W.B. Saunders.
  • Harrison PC, Casey JM, Adair RL, Reeve JJ. 1974. Fluctuation of hypothalamic luteinizing releasing hormone and pituitary gonadotropins in laying and non-laying hens. Poultry Science 53:554–559. DOI: 10.3382/ps.0530554.
  • Hawkey CM, Bennetts M, Gascoyne C, Hart G, Kirkwood JK. 1991. Erythrocyte size, number and haemoglobin content in vertebrates. British Journal of Haematology 77:392–397. DOI: 10.1111/j.1365-2141.1991.tb08590.x.
  • Horner HA, Macgregor HC. 1983. C value and cell volume: Their significance in the evolution and development of amphibians. Journal of Cell Science 63:135–146.
  • Huber MD, Gerace L. 2007. The size-wise nucleus: Nuclear volume control in eukaryotes. Journal of Cell Biology 179:583–584. DOI:10.1083/jcb.200710156.
  • James FC, McCulloch CE. 1985. Data analysis and the design of experiments in ornithology. In: Johnston R, editor. Current ornithology Vol. 2. Boston, MA: Springer. pp. 1–52. DOI:10.1007/978-1-4613-2385-3_1.
  • Janiga M, Haas M. 2019. Alpine accentors as monitors of atmospheric long-range lead and mercury pollution in alpine environments. Environmental Science and Pollution Research 26:2445–2454. DOI: 10.1007/s11356-018-3742-z.
  • Janiga M, Haas M, Kufelová M. 2017. Age, sex and seasonal variation in the shape and size of erythrocytes of the alpine accentor, Prunella collaris (Passeriformes: Prunellidae). The European Zoological Journal 84(1):583–590. DOI:10.1080/24750263.2017.1403656.
  • Jelkmann W. 2011. Regulation of erythropoietin production. Journal of Physiology 589:1251–1258. DOI: 10.1113/jphysiol.2010.195057.
  • Jenni L, Winkler R. 1994. Moult and ageing of European passerines. London: Academic Press. pp. 323.
  • Jevtić P, Levy DL. 2014. Mechanisms of nuclear size regulation in model systems and cancer. Advances in Experimental Medicine and Biology 773:537–569. DOI: 10.1007/978-1-4899-8032-8_25.
  • Jorgensen P, Edgington NP, Schneider BL, Rupes I, Tyers M, Futcher B. 2007. The size of the nucleus increases as yeast cells grow. Molecular Biology of the Cell 18:3523–3532. DOI: 10.1091/mbc.e06-10-0973.
  • Kasprzak M, Hetmański T, Kulczykowska E. 2006. Changes in hematological parameters in free-living pigeons (Columba livia f. urbana) during the breeding cycle. Journal of Ornithology 147:599. DOI: 10.1007/s10336-006-0084-2.
  • Kostelecka-Myrcha A. 1997. The ratio of amount of haemoglobin to total surface area of erythrocytes in birds in relation to body mass, age of nestlings and season of the year. Physiological Zoology 70:278–282. DOI: 10.1086/639597.
  • Kostelecka-Myrcha A, Chołostiakow-Gromek J. 2001. Body mass dependence of the haemoglobin content to surface area ratio of avian erythrocytes. Acta Ornithologica 36:123–128. DOI: 10.3161/068.036.0204.
  • Kozłowski J, Czarnołęski M, François-Krassowska A, Maciak S, Pis T. 2010. Cell size is positively correlated between different tissues in passerine birds and amphibians, but not necessarily in mammals. Biology Letters 6:792–796. DOI: 10.1098/rsbl.2010.0288.
  • Kozłowski J, Konarzewski M, Gawelczyk AT. 2003. Cell size as a link between noncoding DNA and metabolic rate scaling. Proceedings of the National Academy of Sciences USA 100:14 080–14 085. DOI: 101073/pnas.2334605100.
  • Kuenzel WJ. 2003. Neurobiology of molt in avian species. Poultry Science 82:981–991. DOI: 10.1093/ps/82.6.981.
  • Landmann A, Winding N. 1995. Guild organisation and morphology of high-altitude granivorous and insectivorous birds: Convergent evolution in an extreme environment. Oikos 73:237–250. DOI: 10.2307/3545914.
  • Lay PA, Baldwin J. 1999. What determines the size of teleost erythrocytes? Correlations with oxygen transport and nuclear volume. Fish Physiology and Biochemistry 20:31–35. DOI: 10.1023/A:1007785202280.
  • Mani MS. 1990. Fundamentals of high altitude biology. London: Aspect Pub. pp. 138.
  • May JD, Deaton JW, Reece FN, Mitlin N, Kubena LF. 1971. The effect of environmental temperature on blood volume. Poultry Science 50:1867–1870. DOI: 10.3382/ps.0501867.
  • Mazzaro LM, Meegan J, Sarran D, Romano TA, Bonato V, Deng S, Dunn JL. 2013. Molt-associated changes in hematologic and plasma biochemical values and stress hormone levels in African penguins (Spheniscus demersus). Journal of Avian Medicine and Surgery 27:285–293. DOI: 10.1647/2012-004.
  • Monge C, Leon-Velarde F. 1991. Physiological adaptation to high altitude: Oxygen transport in mammals and birds. Physiological Reviews 71:1135–1172. DOI: 10.1152/physrev.1991.71.4.1135.
  • Morera D, Roher N, Ribas L, Balasch JC, Donate C, Callol A, Boltana S, Roberts R, Goetz G, Goetz FW, MacKenzie SA. 2011. RNA-Seq reveals an integrated immune response in nucleated erythrocytes. PloS One 6:10. DOI: 10.1371/journal.pone.0026998.
  • Morton ML. 1994. Hematocrits in montane sparrows in relation to reproductive schedule. The Condor 96:119–126. DOI: 10.2307/1369069.
  • Morton ML, King JR, Farner DS. 1969. Postnuptial and postjuvenal molt in White-crowned Sparrows in central Alaska. The Condor 71:376–385. DOI: 10.2307/1365736.
  • Mosimann JE. 1970. Size allometry: Size and shape variables with characterizations of the lognormal and generalized gamma distributions. Journal of the American Statistical Association 65:930–945. DOI: 10.2307/2284599.
  • Mosimann JE. 1975a. Statistical problems of size and shape. I. Bio logical applications and basic theorems. In: Patil GP, Kotz S, Ord K, editors. Statistical distri butions in scientific work 2. Dordrecht-Holland: D. Reidel Publ. Co. pp. 187–217.
  • Mosimann JE. 1975b. Statistical problems of size and shape. II. Characterizations of the lognormal and gamma dis tributions. In: Patil GP, Kotz S, Ord K, editors. Statistical distributions in scientific work 2. Dordrecht-Holland: D. Reidel Publ. Co. pp. 219–239.
  • Murphy ME. 1996. Energetics and nutrition of molt. In: Carey C, editor. Avian energetics and nutritional ecology. New York: Plenum Press. pp. 158–198.
  • Murphy ME, Taruscio TG. 1995. Sparrows increase their rates of tissue and whole-body protein synthesis during the annual molt. Comparative Biochemistry and Physiology A 111:385–396. DOI: 10.1016/0300-9629(95)00039-A.
  • Neumann FR, Nurse P. 2007. Nuclear size control in fission yeast. Journal of Cell Biology 179:593–600. DOI: 10.1083/jcb.200708054.
  • Newport JW, Wilson KL, Dunphy WG. 1990. A lamin-independent pathway for nuclear envelope assembly. Journal of Cell Biology 111:2247–2259. DOI: 10.1083/jcb.111.6.2247.
  • Newton I, Rothery P. 2005. The timing, duration and pattern of moult and its relationship to breeding in a population of the European greenfinch Carduelis chloris. Ibis 147:667–679. DOI: 10.1111/j.1474-919X.2005.00439.x.
  • Niedojadlo J, Bury A, Cichoń M, Sadowska ET, Bauchinger U. 2018. Lower haematocrit, haemoglobin and red blood cell number in zebra finches acclimated to cold compared to thermoneutral temperature. Journal of Avian Biology 49:jav–01596. DOI: 10.1111/jav.01596.
  • Nolan V, Ketterson ED, Ziegenfus C, Cullen DP, Chandler CR. 1992. Testosterone and avian life Histories - effects of experimentally elevated testosterone on prebasic molt and survival in male dark-eyed juncos. The Condor 94:364–370. DOI: 10.2307/1369209.
  • Pettingill OS. 1985. Ornithology in Laboratory and Field. 5th ed. London: Academic Press. pp. 403.
  • Pis T. 2008. Resting metabolic rate and erythrocyte morphology in early development of thermoregulation in the precocial grey partridge (Perdix perdix). Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology 151:211–218. DOI: 10.1016/j.cbpa.2008.06.026.
  • Pulido F, Coppack T. 2004. Correlation between timing of juvenile moult and onset of migration in the blackcap, Sylvia atricapilla. Animal Behaviour 68:167–173. DOI: 1016/j.anbehav.2003.11.006.
  • Rahn H. 1977. Adaptation of the avian embryo to altitude: The role of gas diffusion through the eggshell. In: Paintal AS, Gill-Kumar P, editors. Respiratory adaptations, capillary exchange and reflex mechanism. Delhi: Vallabhbhai Patel Chest Institute, University of Delhi. pp. 94–105.
  • Rehder NB, Bird DM, Laguë PC. 1982. Variations in blood packed cell volume of captive American Kestrels. Comp. Comparative Biochemistry and Physiology Part A: Physiology 72:105–109. DOI: 10.1016/0300-9629(82)90017-2.
  • Rodríguez-Cajarville MJ, Calderón L, Tubaro PL, Cabanne GS. 2019. Body size and genetic variation in the White-tipped Plantcutter (Phytotoma rutila: Cotingidae) suggest ecological divergence across the Chaco–Andes dry forest belt. Journal of Ornithology 160:947–961. DOI: 10.1007/s10336-019-01694-3.
  • Rozenboim I, Tabibzadeh C, Silsby JL, El Halawani ME. 1993. Effect of ovine prolactin administration on hypothalamic vasoactive intestinal peptide (VIP), gonadotropin releasing hormone I and II content, and anterior pituitary VIP receptors in laying turkey hens. Biology of Reproduction 48:1246–1250. DOI: 10.1095/biolreprod48.6.1246.
  • Schleussner G, Dittami JP, Gwinner E. 1985. Testosterone implants affect molt in male European starlings, Sturnus vulgaris. Physiological Zoology 58:597–604. DOI:10.1086/physzool.58.5.30158586.
  • Sekimoto K, Imai K, Suzuki M, Takikawa H, Hoshino N, Tosuka K. 1987. Thyroxin-induced molting and gonadal function in laying hens. Poultry Science 66:752–756. DOI: 10.3382/ps.0660752.
  • Snyder GK, Sheafor BA. 1999. Red blood cells: Centerpiece in the evolution of the vertebrate circulatory system. American Zoologist 39:189–198. DOI: 10.1093/icb/39.2.189.
  • Starostová Z, Konarzewski M, Kozłowski J, Kratochvíl L. 2013. Ontogeny of metabolic rate and red blood cell size in eyelid geckos: Species follow different paths. PLoS One 8:5. DOI: 10.1371/journal.pone.0064715.
  • Tabibzadeh C, Rozenboim I, Silsby JL, Pitts GR, Foster DN, El Halawani ME. 1995. Modulation of ovarian cytochrome P450 17S-hydroxylase and cytochrome aromatase mRNA by prolactin in the domestic turkey. Biology of Reproduction 52:600–608. DOI: 10.1095/biolreprod52.3.600.
  • Webster M, Witkin KL, Cohen-Fix O. 2009. Sizing up the nucleus: Nuclear shape, size and nuclear-envelope assembly. Journal of Cell Science 122:1477–1486. DOI: 10.1242/jcs.037333.
  • Weinstein Y, Bernstein MH, Bickler PE, Gonzales DV, Samaniego FC, Escobedo MA. 1985. Blood respiratory properties in pigeons at high altitudes: Effects of acclimation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 249:R765–R775. DOI: 10.1152/ajpregu.1985.249.6.R765.
  • Wilson EB. 1925. The karyoplasmic ratio. In: The cell in development and heredity. 3th ed. The New York: Macmillan Company. pp. 727–733.
  • Worman HJ, Courvalin JC. 2005. Nuclear envelope, nuclear lamina, and inherited disease. International Review of Cytology 246:231–279. DOI: 10.1016/S0074-7696(05)46006-4.
  • Yang L, Guan T, Gerace L. 1997. Lamin-binding fragment of LAP2 inhibits increase in nuclear volume during the cell cycle and progression into S phase. Journal of Cell Biology 139:1077–1087. DOI: 10.1083/jcb.139.5.1077.
  • Yap KN, Dick MF, Guglielmo CG, Williams TD. 2018. Effects of experimental manipulation of hematocrit on avian flight performance in high-and low-altitude conditions. Journal of Experimental Zooloogy 221:jeb191056.