1,394
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Pre-hibernation energy reserves and their consumption during freezing in the moor frog Rana arvalis in Siberia

ORCID Icon &
Pages 556-567 | Received 23 Dec 2021, Accepted 26 Mar 2022, Published online: 25 Apr 2022

References

  • Berman DI, Bulakhova NA, Meshcheryakova EN, Shekhovtsov SV. 2020. Overwintering and cold tolerance in the moor frog (Rana arvalis) across its range. Canadian Journal of Zoology 98:705–714. DOI: 10.1139/cjz-2019-0179.
  • Berman DI, Leirikh AN, Mikhailova EI. 1984. Wintering of the Siberian salamander Hynobius keyserlingi in the Upper Kolyma. Journal of Evolutionary Biochemistry and Physiology 20(3):323–327.
  • Bleibtreu M. 1911. Weitere untersuchungen uber das verhalten des glykogens im eierstock der Rana fusca. Pflügers Archiv European Journal of Physiology 141(4–7):328–342. DOI: 10.1007/BF01689701.
  • Canal J, Delattre J, Girard ML. 1972. Acquisitions nouvelles dans le dosage des lipides totaux du serum: description d'une methode nephelemetrique. Part 1. Technique manuelle. Annales de Biologie Clinique 30:325–332.
  • Chen W, Guan T, Ren L, He D, Wang Y, Lu X. 2015. Prehibernation energy storage in Heilongjiang brown frogs (Rana amurensis) from five populations in North China. Asian Herpetological Research 6(1):45–50. DOI: 10.16373/j.cnki.ahr.140036.
  • Chen W, Lu X. 2011. Sex recognition and mate choice in male Rana kukunoris. Herpetological Journal 21:141–144.
  • Chen W, Wang X, Fan X. 2013. Do anurans living in higher altitudes have higher pre-hibernation energy storage? Investigations from a high-altitude frog. Herpetological Journal 23:45–49.
  • Costanzo JP, Amaral MCF, Rosendale AJ, Lee RE Jr. 2013. Hibernation physiology, freezing adaptation and extreme freeze tolerance in a northern population of the wood frog. Journal of Experimental Biology 216:3461–3473. DOI: 10.1242/jeb.089342.
  • Costanzo JP, Lee RE. 1993. Cryoprotectant production capacity of the freeze-tolerant wood frog, Rana sylvatica. Canadian Journal of Zoology 71:71–75. DOI: 10.1139/z93-011.
  • Costanzo JP, Reynolds AM, do Amaral MCF, Rosendale AJ, Lee RE. 2015. Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog. PLoS One 10(2):e0117234. DOI: 10.1371/journal.pone.0117234.
  • do Amaral MCF, Lee RE Jr, Costanzo JP. 2016. Enzymatic regulation of seasonal glycogen cycling in the freeze-tolerant wood frog, Rana sylvatica. Journal of Comparative Physiology B 186:1045–1058. DOI: 10.1007/s00360-016-1012-2.
  • Elmberg J. 2008. Ecology and life history of the moor frog Rana arvalis in boreal Sweden. In: Glandt D, Jehle R, editors. Der Moorfrosch / The Moor frog. Zeitschrift für Feldherpetologie. pp. 179–194.
  • Feder ME, Burggren WW. 1992. Environmental physiology of the amphibians. Chicago: University of Chicago Press.
  • Fitzpatrick LC. 1976. Life history patterns of storage and utilization of lipids for energy in amphibians. American Zoologist 16(4):725–732.
  • Glandt D. 2008. Der Moorfrosch (Rana arvalis): Erscheinungsvielfalt, Verbreitung, Lebensräume, Verhalten sowie Perspektiven für den Artenschutz. In: Glandt D, Jehle R, editors. Der Moorfrosch / The Moor frog. Zeitschrift für Feldherpetologie, Supplement, pp. 11–34.
  • Guzairova SK, Naumov YS, Solomonova TN, Tomshina AA. 1977. On the content of ascorbic acid and glycogen in the organs of the Siberian frog. In: Solomonov NG, editor. Ecological and physiological adaptations of animals and man to the conditions of the North. Yakutsk: Institute of Biology Press. pp. 93–95.
  • Hirota A, Takiya Y, Sakamoto J, Shiojiri N, Suzuki M, Tanaka S, Okada R. 2015. Molecular cloning of cDNA encoding an aquaglyceroporin, AQP-h9, in the Japanese tree frog, Hyla japonica: possible roles of AQP-h9 in freeze tolerance. Zoological Science 32(3):296–306. DOI: 10.2108/zs140246.
  • Iela L, Milone M, Filomena M, Rakesh C, Rastogi K, Chieffi G. 1979. Role of lipids in the physiology of the testis of Rana esculenta: Annual changes in the lipid and protein content of the liver, fat body, testis and plasma. Bollettino di Zoologia 46(1–2):11–16. DOI: 10.1080/11250007909440272.
  • Kato K. 1910. Uber das verhalten des glykogenes im eierstocke der frosche zu den verschiedenen jahreszeiten. Pflügers Archiv European Journal of Physiology 132:545–579. DOI: 10.1007/BF01683638.
  • Kotlyarevskaya VA. 1976. Amphibians and reptiles of the Kulunda steppe. Protection and transformation of the nature of the forest-steppe of Western Siberia. Novosibirsk: Nauka. pp. 229–241.
  • Krasavtsev BA. 1939. Materials on the ecology of the moor frog (Rana terrestris Andrz). Ecology and biocenology issues. Vol. 4. Leningrad: Leningrad State University Press. pp. 253–267.
  • Kushniruk VA. 1964. On wintering of some amphibians in the western regions of Ukraine. Proceeding of the 3rd All-Union Herpetological Conference, Leningrad. pp. 37–38.
  • Kutenkov AP. 1991. Dynamics of liver, fat bodies and gonads in common (Rana temporaria) and moor (R. arvalis) frogs // Ecology of terrestrial vertebrates. Petrozavodsk 6:14–24.
  • Layne JR Jr, Jones AL. 2001. Freeze tolerance in the gray tree frog: cryoprotectant mobilization and organ dehydration. Journal of Experimental Zoology 290(1):1–5. DOI: 10.1002/jez.1030.
  • Loumbourdis NS, Kyriakopoulou-Sklavounou P. 1991. Reproductive and lipid cycles in the male frog Rana ridibunda in northern Greece. Comparative Biochemistry and Physiology 99A(4):577–583. DOI: 10.1016/0300-9629(91)90133-W.
  • Matkovskiy AV, Starikov VP. 2011. The ecological aspects of amphibians reproduction in the north of Western Siberia. Bulletin of the Samara Scientific Center RAS 13(1(5)):1130–1132.
  • Naumov YS. 1981. Ecological and physiological study of populations of the Siberian frog (Rana amurensis Boul., 1886) in the north of its range. Ph.D. thesis. Institute of Plant and Animal Ecology, UB RAS, Yekaterinburg.
  • Niu Y, Cao W, Storey KB, He J, Wang J, Zhang T, Tang X, Chen Q. 2020. Metabolic characteristics of overwintering by the high-altitude dwelling Xizang plateau frog, Nanorana parkeri. Journal of Comparative Physiology B 190:433–444. DOI: 10.1007/s00360-020-01275-4.
  • Niu Y, Wang J, Men S, Zhao Y, Lu S, Tang X, Chen Q. 2018. Urea and plasma ice-nucleating proteins promoted the modest freeze tolerance in Pleske’s high altitude frog Nanorana pleskei. Journal of Comparative Physiology B 188:599–610. DOI: 10.1007/s00360-018-1159-0.
  • Pasanen S, Koskela P. 1974. Seasonal and age variation in the metabolism of the common frog, Rana temporaria L, in northern Finland. Comparative Biochemistry and Physiology A 47(2):635–654. DOI: 10.1016/0300-9629(74)90027-9.
  • Schlaghecke R, Blom V. 1978. Seasonal variations in fat body metabolism of the green frog Rana esculenta (L.). Experientia 34:456–457. DOI: 10.1007/BF01915320.
  • Sedalishchev VT, Belimov GT, Bekeneva GN. 1981. Some morphophysiological adaptations of the moor frog (Rana arvalis) in southern Yakutia. Proceeding of the 5 All-Union Herpetological Conference, Leningrad. pp. 122–123.
  • Sedalishchev VT, Odnokurtsev VA. 2017. Ecological features of the moor frog (Rana arvalis Nilson, 1842) in south-western Yakutia. Biological Sciences of Kazakhstan 3:70–78.
  • Severin SE, Solovyeva GA. 1989. Praktikum po biohimii. Moscow: MSU.
  • Shekhovtsov SV, Bulakhova NA, Tsentalovich YP, Zelentsova EA, Meshcheryakova EN, Poluboyarova TV, Berman DI. 2021. Biochemical response to freezing in the Siberian salamander Salamandrella keyserlingii. Biology 10(11):1172. DOI: 10.3390/biology10111172.
  • Shwarts SS, Ishchenko VG. 1971. Puti prisposobleniya nazemnyh pozvonochnyh zhivotnyh k usloviyam sushchestvovaniya v Subarktike. T. 3. Zemnovodnye. Sverdlovsk: IPAE URO RAN.
  • Sinclair BJ, Stinziano JR, Williams CM, MacMillan HA, Marshall KE, Storey KB. 2013. Real-time measurement of metabolic rate during freezing and thawing of the wood frog, Rana sylvatica: Implications for overwinter energy use. Journal of Experimental Biology 216:292–302. DOI: 10.1242/jeb.076331.
  • Smith CL. 1950. Seasonal changes in blood sugar, fat bodies, liver glycogen and gonads in the common frog (Rana temporaria). Journal of Experimental Biology 26(4):412–429. DOI: 10.1242/jeb.26.4.412.
  • Storey KB, Storey JM. 1984. Biochemical adaptation for freezing tolerance in the wood frog, Rana sylvatica. Comparative Biochemistry and Physiology B 155:29–36. DOI: 10.1007/BF00688788.
  • Storey KB, Storey JM. 1986. Freeze tolerance and intolerance as strategies of winter survival in terrestrially-hibernating amphibians. Comparative Biochemistry and Physiology A 83:613–617. DOI: 10.1016/0300-9629(86)90699-7.
  • Tarnoky K, Nagy S. 1963. Spectrophotometric determination of glycogen with o-toluidine. Clinica Chimica Acta 8:627–628. DOI: 10.1016/0009-8981(63)90116-5.
  • Tattersall GJ, Ultsch GR. 2008. Physiological ecology of aquatic overwintering in ranid frogs. Biological Reviews 83:119–140. DOI: 10.1111/j.1469-185X.2008.00035.x.
  • Terentyev PV. 1950. Frog. Moscow: Sovetskaya Nauka.
  • van der Lugt A, Slagboom R. 2016. Heikikkers in het veenweidegebied. RAVON 63(4):77–79.
  • Voituron Y, Barre H, Ramlov H, Douady CJ. 2009. Freeze tolerance evolution among anurans: Frequency and timing of appearance. Cryobiology 58:241–247. DOI: 10.1016/j.cryobiol.2009.01.001.
  • Voituron Y, Joly P, Eugène M, Bareé H. 2005. Freezing tolerance of the European water frogs: The good, the bad, and the ugly. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 288:1563–1570. DOI: 10.1152/ajpregu.00711.2004.
  • Wind-Larsen H, Jørgensen CB. 1987. Hormonal control of seasonal growth in a temperate zone toad Bufo bufo. Acta zoologica 68(1):49–56. DOI: 10.1111/j.1463-6395.1987.tb00875.x.
  • Wygoda ML. 1987. Cutaneous and subcutaneous adipose tissue in anuran amphibians. Copeia 1987(4):1031–1035. DOI: 10.2307/1445569.
  • Xiao X, Zheng D, Yang C, Chai L. 2008. Survival and metabolic responses to freezing temperature in the northeast forest frog Rana dybowskii. Asiatic Herpetological Research 11:147–152.