932
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Probing behavior of Aphis fabae and Myzus persicae on three species of grapevines with analysis of grapevine leaf anatomy and allelochemicals

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 83-100 | Received 09 Jun 2022, Accepted 15 Dec 2022, Published online: 18 Jan 2023

References

  • Ahmed M, Ji M, Qin P, Gu Z, Liu Y, Sikandar A, Iqbal MF, Javeed A. 2019. Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis sativa L. Applied Ecology And Environmental Research 17(3):6961–6979. DOI: 10.15666/aeer/1703_69616979.
  • Akbar W, Showler AT, Reagan TE, Davis JA, Beuzelin JM. 2014. Feeding by sugarcane aphid, Melanaphis sacchari, on sugarcane cultivars with differential susceptibility and potential mechanism of resistance. Entomologia Experimentalis Et Applicata 150(1):32–44. DOI: 10.1111/eea.12136.
  • Aliaño-González MJ, Richard T, Cantos-Villar E. 2020. Grapevine cane extracts: Raw plant material, extraction methods, quantification, and applications. Biomolecules 10(8):1195. DOI: 10.3390/biom10081195.
  • Alvarez AE, Garzo E, Verbeek M, Vosman B, Dicke M, Tjallingii WF. 2007. Infection of potato plants with potato leafroll virus changes attraction and feeding behaviour of Myzus persicae. Entomologia Experimentalis Et Applicata 125(2):135–144. DOI: 10.1111/j.1570-7458.2007.00607.x.
  • Alvarez AE, Tjallingii WF, Garzo E, Vleeshouwers V, Dicke M, Vosman B. 2006. Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to aphid Myzus persicae. Entomologia Experimentalis Et Applicata 121(2):145–157. DOI: 10.1111/j.1570-8703.2006.00464.x.
  • Ammar E-D, Richardson ML, Abdo Z, Hall DG, RG Jr. S. 2014. Differences in stylet sheath occurrence and the fibrous ring (Sclerenchyma) between x Citroncirus plants relatively resistant or susceptible to adults of the Asian Citrus Psyllid Diaphorina citri (Hemiptera: Liviidae). PLoS ONE 9(10):e110919. DOI: 10.1371/journal.pone.0110919.
  • Baroi AM, Popitiu M, Fierascu I, Sărdărescu I-D, Fierascu RC. 2022. Grapevine wastes: A rich source of antioxidants and other biologically active compounds. Antioxidants 11(2):393. DOI: 10.3390/antiox11020393.
  • Baronio CA, Andzeiewski S, Silva da Cunha U, Botton M. 2014. Biologia e tabela de vida de fertilidade do pulgao-preto em cultivares de videira. Pesquisa Agropecuaria Brasilieira Brasília 49(9):665–672. DOI: 10.1590/S0100-204X2014000900002.
  • Basso MF, Fajardo TVM, Saldarelli P. 2016. Grapevine virus diseases: Economic impact and current advances in viral prospection and management. Revista Brasiliera de Fruticultura 39(1):e–411. DOI: 10.1590/0100-29452017411.
  • Biais B, Krisa S, Cluzet S, Da Costa G, Waffo-Teguo P, Mérillon J-M, Richard T. 2017. Antioxidant and cytoprotective activities of grapevine stilbenes. Journal of Agricultural and Food Chemistry 65(24):4952–4960. DOI: 10.1021/acs.jafc.7b01254.
  • Biesaga M, Pyrzyńska K. 2013. Stability of bioactive polyphenols from honey during different extraction methods. Food Chemistry 136(1):46–54. DOI: 10.1016/j.foodchem.2012.07.095.
  • Blackman RL, Eastop VF. 2006. Host lists and keys. In: Aphids on the world’s herbaceous plants and shrubs. Chichester: John Wiley & Sons Ltd, Natural History Museum.
  • Boczek J. 1988. Odporność roślin oraz hodowla i uprawa odmian odpornych jako metoda walki ze szkodnikami: 47-57. Nauka o szkodnikach. Państwowe Wydawnictwo Rolnicze i Leśne.
  • Buer CS, Muday GK, Djordjevic MA. 2008. Implications of long-distance flavonoid movement in Arabidopsis thaliana. Plant Signaling & Behavior 3(6):415–417. DOI: 10.4161/psb.3.6.5440.
  • Burns J, Mullen W, Landrault N, Teissedre P-L, Lean MEJ, Crozier A. 2002. Variations in the profile and content of anthocyanins in wines made from cabernet sauvignon and hybrid grapes. Journal of Agricultural and Food Chemistry 50(14):4096–4102. DOI: 10.1021/jf011233s.
  • CABI. 2022a. Aphis fabae. In: CABI Compendium. Wallingford, UK: CAB International. Available: https://doi.org/10.1079/cabicompendium.6196. Accesseed 24 May 2022.
  • CABI. 2022b. Myzus persicae. In: CABI Compendium. Wallingford, UK: CAB International. Available: https://doi.org/10.1079/cabicompendium.35642. Accessed: 24 May 2022.
  • Canassa VF, Baldin ELL, Lourencao AL, Barros DRP, Lopes NP, Sartori MMP. 2020. Feeding behavior of Brevicoryne brassicae in resistant and susceptible collard greens genotypes: Interactions among morphological and chemical factors. Entomologia Experimentalis Et Applicata 168(3):228–239. DOI: 10.1111/eea.12897.
  • Castillo-Munoz N, Gomez-Alonso S, Garcıa-Romero E, Hermosın-Gutierrez I. 2010. Flavonol profiles of Vitis vinifera white grape cultivars. Journal of Food Composition and Analysis 23(7):699–705. DOI: 10.1016/j.jfca.2010.03.017.
  • Chan CK, Forbes AR, Raworth DA. 1991. Aphid-transmitted viruses and their vectors of the world. Technical Bulletin 1991-3E. Vancouver: Research Branch Agriculture Canada.
  • Chong J, Poutaraud A, Hugueney P. 2009. Metabolism and roles of stilbenes in plants. Plant Science 177(3):143–155. DOI: 10.1016/j.plantsci.2009.05.012.
  • Dancewicz K, Sznajder K, Załuski D, Kordan B, Gabryś B. 2016. Behavioral sensitivity of Myzus persicae to volatile isoprenoids in plant tissues. Entomologia Experimentalis Et Applicata 160(3):229–240. DOI: 10.1111/eea.12480.
  • De la Fuente Lloreda M. 2018. Use of hybrids in viticulture. A challenge for the OIV. OENO One 52(3):231–234. DOI: 10.20870/oeno-one.2018.52.3.2312.
  • De Rosso M, Tonidandel L, Larcher R, Nicolini G, Vedova AD, De Marchi F, Gardiman M, Giusta M, Flamini R. 2014. Identification of new flavonols in hybrid grapes by combined liquid chromatography–mass spectrometry approaches. Food Chemistry 163:244–251. DOI: 10.1016/j.foodchem.2014.04.110.
  • Dogimont C, Bendahmane A, Chovelon V, Boissot N. 2010. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. Comptes Rendus - Biologies 333(6–7):566–573. DOI: 10.1016/j.crvi.2010.04.003.
  • Fuchs M. 2020. Grapevine viruses: A multitude of diverse species with simple but overall poorly adopted management solutions in the vineyard. Journal of Plant Pathology 102(3):643–653. DOI: 10.1007/s42161-020-00579-2.
  • Gabryś B, Pawluk M. 1999. Acceptability of different species of Brassicaceae as hosts for the cabbage aphid. Entomologia Experimentalis Et Applicata 91(1):105–109. DOI: 10.1046/j.1570-7458.1999.00471.x.
  • Goławska S, Łukasik I. 2009. Acceptance of low-saponin lines of alfalfa with varied phenolic concentrations by pea aphid. Biologia Section Zoology 64(2):377–382. DOI: 10.2478/s11756-009-0051-5.
  • Goławska S, Łukasik I. 2012. Antifeedant activity of luteolin and genistein against the pea aphid, Acyrthosiphon pisum. Journal of Pest Science 85(4):443–450. DOI: 10.1007/s10340-012-0452-z.
  • Goławska S, Łukasik I, Kapusta I, Janda B. 2010. Analysis of flavonoids content in alfalfa/ Analiza zawartości flawonoidów w lucernie. Ecological Chemistry and Engineering 17(2–3):261–267.
  • Goławska S, Sprawka I, Łukasik I. 2014. Are naringenin and quercetin useful chemicals in pest-management strategies? Journal of Pest Science 87(1):173–180. DOI: 10.1007/s10340-013-0535-5.
  • Golonko A, Kalinowska M, Świsłocka R, Świderski G, Lewandowski W. 2015. Zastosowanie związków fenolowych i ich pochodnych w przemyśle i medycynie. Civil and Environmental Engineering 6:161–179.
  • Goufo P, Singh RK, Cortez I. 2020. A reference list of phenolic compounds (including stilbenes) in grapevine (Vitis vinifera L.) roots, woods, canes, stems, and leaves. Antioxidants 9(5):398. DOI: 10.3390/antiox9050398.
  • Halarewicz A, Gabryś B. 2012. Probing behavior of bird cherry oat aphid Rhopalosiphum padi (L.) on native bird cherry Prunus padus L. and alien invasive black cherry Prunus serotine Erhr. In Europe and the role of cyanogenic glycosides. Anthropod-Plant Interactions 6(4):497–505. DOI: 10.1007/s11829-012-9228-x.
  • Harborne JB. 1997. Ekologia biochemiczna. Warszawa: PWN.
  • Holman J. 2009. Host plant catalog of aphids. Dordrecht: Springer. p. 1140.
  • Huang F, Tjallingii WF, Zhang P, Zhang J, Lu Y, Lin J. 2012. EPG waveform characteristics of solenopsis mealybug stylet penetration on cotton. Entomologia Experimentalis Et Applicata 143(1):47–54. DOI: 10.1111/j.1570-7458.2012.01233.x.
  • James DG, Whitney J. 1993. Mite populations on grapevines in south-eastern Australia: Implications for biological control of grapevine mites (Acarina: Tenuipalpidae, Eriophyidae). Experimental & Applied Acarology 17(4):259–270. DOI: 10.1007/BF02337275.
  • Jasiński M, Mazurkiewicz M, Rodziewicz P, Figlerowicz M. 2009. Flawonoidy – Budowa, właściwości i funkcja ze szczególnym uwzględnieniem roślin motylkowatych. Biotechnologia 2(85):81–94.
  • Jeszka M, Flaczyk E, Kobus-Cisowska J, Dziedzic K. 2010. Związki fenolowe – Charakterystyka i znaczenie w technologii żywności. Nauka Przyroda Technologie 4(2):1–13.
  • Jiang YX, Nombela G, Muniz M. 2001. Analysis by DC-EPG of the resistance to Bemisia tabaci on an Mi -tomato line. Entomologia Experimentalis Et Applicata 99(3):295–302. DOI: 10.1046/j.1570-7458.2001.00828.x.
  • Kedrina-Okutan O, Novello V, Hoffmann T, Hadersdorfer J, Schneider A, Schwab W, Ferrandino A. 2019. Polyphenolic diversity in Vitis sp. Leaves. Scientia Horticulturae 256:108569. DOI: 10.1016/j.scienta.2019.108569.
  • Keller M. 2015a. Botany and anatomy: 1-57. In: The science of grapevines. 2nd ed. Oxford: Elsevier LTD. pp. 522.
  • Keller M. 2015b. Living with other organisms: 343-367. In: The science of grapevines. 2nd ed. Oxford: Elsevier LTD. pp. 522.
  • Kidd NAC. 1976. Factors influencing leaf vein selection in the lime aphid (Eucallipterus tiliae L.). Oecologia (Berl.) 23(3):247–254. DOI: 10.1007/BF00361239.
  • Klinger J, Powell G, Thompson GA, Isaacs R. 1998. Phloem specific aphid resistance in Cucumis melo line AR5: Effects on feeding behaviour and performance of Aphis gossypii. Entomologia Experimentalis Et Applicata 86(1):79–88. DOI: 10.1046/j.1570-7458.1998.00267.x.
  • Kordan B, Gabryś B, Dancewicz K, Lahuta LB, Piotrowicz-Cieślak A, Rowińska E. 2008. European yellow lupine, Lupinus luteus, and narrow-leaf lupine, Lupinus angustifolius, as hosts for the pea aphid, Acyrthosiphon pisum. Entomologia Experimentalis Et Applicata 128(1):139–146. DOI: 10.1111/j.1570-7458.2008.00702.x.
  • Kordan B, Stec K, Słomiński P, Giertych M, Wróblewska-Kurdyk A, Gabryś B. 2018. Susceptibility of forage legumes to infestation by the pea aphid Acyrthosiphon pisum (Harris) (Hemiptera: Aphididae). Crop & Pasture Science 69(8):775–784. DOI: 10.1071/CP18065.
  • Kordan B, Stec K, Słomiński P, Laszczak-Dawid A, Wróblewska-Kurdyk A, Gabryś B. 2019. Antixenosis potential in pulses against the pea aphid (Hemiptera: Aphididae). Journal of Economic Entomology 112(1):465–474. DOI: 10.1093/jee/toy349.
  • Kordan B, Wróblewska-Kurdyk A, Bocianowski J, Stec K, Jankowski K, Gabryś B. 2021. Variation in susceptibility of rapeseed cultivars to the peach potato aphid. Journal of Pest Science 94(2):435–449. DOI: 10.1007/s10340-020-01270-2.
  • Kozak A, Chrzanowski G, Sempruch C, Klewek A, Chwedczuk M. 2015. Effect of selected flavonoids on the behavior of the bird cherry-oat aphid (Rhopalosiphum padi L.) during the colonization of winter wheat. Progress In Plant Protection 55(2):202–206. DOI: 10.14199/ppp-2015-033.
  • Kozłowska M, Czekała Ł. 2017. Stilbenes and their role in disease resistance. Progress In Plant Protection 57(1):27–35. DOI: 10.14199/ppp-2017-004.
  • Lattanzio V, Arpaia S, Cardinali A, Di Venere D, Linsalata V. 2000. Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. Journal of Agricultural and Food Chemistry 48(11):5316–5320. DOI: 10.1021/jf000229y.
  • Leszczyński B. 1996. Kurs praktyczny w zakresie chemicznych interakcji owady – Rośliny na przykładzie mszyc (Aphidoidea). Siedlce: WSRP. pp. 16–63.
  • Liang L, Liu L, Yu X, Han B. 2012. Evaluation of the resistance of different tea cultivars to tea aphids by EPG technique. Journal of Integrative Agriculture 11(12):2028–2034. DOI: 10.1016/S2095-3119(12)60460-2.
  • Machado-Assefh CR, Alvarez AE. 2018. Probing behavior of aposymbiotic green peach aphid (Myzus persicae) on susceptible Solanum tuberosum and resistant Solanum stoloniferum plants. Insect Science 25(1):127–136. DOI: 10.1111/1744-7917.12372.
  • Majewska M, Czeczot H. 2009. Flawonoidy w profilaktyce i terapii. Farmacja Polska 65(5):369–377.
  • Makowska-Wąs J, Janeczko Z. 2008. Stilbeny naturalnego pochodzenia. Część I. Czasopismo Aptekarskie, Vol. 15, Suppl. Rośliny Lecznicze w Polsce i na Świecie 2:7–15.
  • Malinowski H. 2008. Strategie obronne roślin drzewiastych przed szkodliwymi owadami. Leśne Prace Badawcze (Forest Research Papers) 69(2):165–173.
  • Marchetti E, Civolani S, Leis M, Chicca M, Tjjalingii WF, Pasqualini E, Baronio P. 2009. Tissue location of resistance in apple to the rosy apple aphid established by electrical penetration graphs. Bulletin of Insectology 62(2):203–208.
  • Martin B, Collar JL, Tjallingi WF, Fereres A. 1997. Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of non-persistently transmitted plant viruses. Journal of General Virology 78(10):2701–2705. DOI: 10.1099/0022-1317-78-10-2701.
  • Mayoral AM, Tjallingii WF, Castanera P. 1996. Probing behavior of Diuraphis noxia on five cereal species with different hydroxyamic acid levels. Entomologia Experimentalis Et Applicata 78(3):341–348. DOI: 10.1111/j.1570-7458.1996.tb00799.x.
  • Miles P. 1999. Aphid saliva. Biological Reviews 74(1):41–85. DOI: 10.1017/S0006323198005271.
  • Myśliwiec R. 2009. Uprawa winorośli. Kraków: Plantpress. pp. 164.
  • Nopo-Olazabal C, Condori J, Nopo-Olazabal L, Medina-Bolivar F. 2014. Differential induction of antioxidant stilbenoids in hairy roots of Vitis rotundifolia treated with methyl jasmonate and hydrogen peroxide. Plant Physiology and Biochemistry 74:50–69. DOI: 10.1016/j.plaphy.2013.10.035.
  • Ocete R, Lopez MA, Gallardo A, Arnold C. 2008. Comparative analysis of wild and cultivated grapevine (Vitis vinifera) in the Basque Region of Spain and France. Agriculture, Ecosystems & Environment 123(1–3):95–98. DOI: 10.1016/j.agee.2007.05.009.
  • Omer AD, Granett J, Shebelut CW. 1999. Effect of attack intensity on host utilization in grape phylloxera. Crop Protection 18(5):341–347. DOI: 10.1016/S0261-2194(99)00033-2.
  • Pawlus AD, Waffo-Téguo P, Shaver J, Mérillon JM. 2012. Stilbenoid chemistry from wine and the genus Vitis, a review. Journal International Des Sciences de la Vigne Et du Vin 46(2):57–111.
  • Petrussa E et al. 2013. Plant flavonoids–biosynthesis, transport and involvement in stress responses. International Journal of Molecular Sciences 14(7):14950–14973. DOI: 10.3390/ijms140714950.
  • Pettersson J, Tjallingii WF, Hardie J. 2007. Host plant selection and feeding. In: van Emden H, Harrington R, editors. Aphids as crop pests. Wallingford UK: CAB International. pp. 87–114.
  • Philippi J, Schliephake E, Jurgens HU, Jansen G, Ordon F. 2015. Feeding behavior of aphids on narrow-leafed lupin (Lupinus angustifolius) genotypes varying in the content of quinolizidine alkaloids. Entomologia Experimentalis Et Applicata 156(1):37–51. DOI: 10.1111/eea.12313.
  • Pompon J, Pelletier Y. 2012. Changes in aphid probing behaviour as a function of insect age and plant resistance level. Bulletin of Entomological Research 102(5):550–557. DOI: 10.1017/S0007485312000120.
  • Portu J, López-Alfaro I, Gómez-Alonso S, López R, Garde-Cerdán T. 2015. Changes on grape phenolic composition induced by grapevine foliar applications of phenylalanine and urea. Food Chemistry 180:171–180. DOI: 10.1016/j.foodchem.2015.02.042.
  • Powell G, Tosh CR, Hardie J. 2006. Host plant selection by aphids: Behavioral, evolutionary, and applied perspectives. Annual Review of Entomology 51(1):309–330. DOI: 10.1146/annurev.ento.51.110104.151107.
  • Prado E, Tjallingii WF. 1997. Effects of previous plant infestation on sieve element acceptance by two aphids. Entomologia Experimentalis Et Applicata 82(2):189–200. DOI: 10.1046/j.1570-7458.1997.00130.x.
  • Sauge M-H, Kervella J, Rahbe Y. 1998. Probing behaviour of the green peach aphid Myzus persicae on resistant Prunus genotypes. Entomologia Experimentalis Et Applicata 89(3):223–232. DOI: 10.1046/j.1570-7458.1998.00403.x.
  • Sekrecka M, Łabanowska BH, Piotrowski W. 2015. Integrowana metoda ograniczania szkodników winorośli. In: Lisek J, editor. Metodyka Integrowanej Ochrony Winorośli (Materiały dla producentów) – Opracowanie zbiorowe. Skierniewice: Instytut Ogrodnictwa. pp. 29–43.
  • Sergiel I, Pohl P, Biesaga M. 2014. Characterisation of honeys according to their content of phenolic compounds using high performance liquid chromatography/tandem mass spectrometry. Food Chemistry 145:404–408. DOI: 10.1016/j.foodchem.2013.08.068.
  • Silva-Sanzana C, Estevez JM, Blanco-Herrera F. 2020. Influence of cell wall polymers and their modifying enzymes during plant–aphid interactions. Journal of Experimental Botany 71(13):3854–3864. DOI: 10.1093/jxb/erz550.
  • Simmonds MSJ. 2003. Flavonoid-insect interactions: Recent advances in our knowledge. Phytochemistry 64(1):21–30. DOI: 10.1016/S0031-9422(03)00293-0.
  • Singh B, Simon A, Halsey K, Kurup S, Clark S, Aradottir GI. 2020. Characterisation of bird cherry-oat aphid (Rhopalosiphum padi L.) behaviour and aphid host preference in relation to partially resistant and susceptible wheat landraces. Annals Applied Biology 177(2):184–194. DOI: 10.1111/aab.12616.
  • Smith CM, Boyko EV. 2007. The molecular bases of plant resistance and defense responses to aphid feeding: Current status. Entomologia Experimentalis Et Applicata 122(1):1–16. DOI: 10.1111/j.1570-7458.2006.00503.x.
  • Smith CM, Chuang WP. 2014. Plant resistance to aphid feeding: Behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. Pest Management Science 70(4):528–540. DOI: 10.1002/ps.3689.
  • Smith CM, Clement SL. 2012. Molecular bases of plant resistance to arthropods. Annual Review of Entomology 57(1):309–328. DOI: 10.1146/annurev-ento-120710-100642.
  • Souza MF, Davis JA. 2020. Detailed characterization of Melanaphis sacchari (Hemiptera: Aphididae) feeding behavior on different host plants. Environmental Entomology 49(3):683–691. DOI: 10.1093/ee/nvaa036.
  • Spiller NJ, Koenders L, Tjallingii WF. 1990. Xylem ingestion by aphids – A strategy for maintaining water balance. Entomologia Experimentalis Et Applicata 55(2):101–104. DOI: 10.1111/j.1570-7458.1990.tb01352.x.
  • Stec K, Kordan B, Sergiel I, Biesaga M, Mroczek J, Bocianowski J, Gabryś B. 2021. Antixenosis in Glycine max (L.) Merr against Acyrthosiphon pisum (Harris). Scientific Reports 11(1):15289. DOI: 10.1038/s41598-021-94703-6.
  • Stout MJ. 2013. Reevaluating the conceptual framework for applied research on host-plant resistance. Insect Science 20(3):263–272. DOI: 10.1111/1744-7917.12011.
  • Sun M, Voorrips RE, Steenhuis-Broers G, Van’t Westende W, Vosman B. 2018. Reduced phloem uptake of Myzus persicae on an aphid resistant pepper accession. BMC Plant Biology 18(1):138. DOI: 10.1186/s12870-018-1340-3.
  • Teissedre P-L. 2018. Composition of grape and wine from resistant vines varieties. OENO One 52(3):211–217. DOI: 10.20870/oeno-one.2018.52.3.2223.
  • Tetreault HM, Grover S, Scully ED, Gries T, Palmer NA, Sarath G, Louis J, Sattler SE. 2019. Global Responses of Resistant and Susceptible Sorghum (Sorghum bicolor) to Sugarcane Aphid (Melanaphis sacchari). Frontiers in Plant Science 10:145. DOI: 10.3389/fpls.2019.00145.
  • Tjallingii WF. 1978. Electronic recording of penetration behavior by aphids. Entomologia Experimentalis Et Applicata 24(3):521–530. DOI: 10.1111/j.1570-7458.1978.tb02836.x.
  • Tjallingii WF. 1986. Wire effects on aphids during electrical recording of stylet penetration. Entomologia Experimentalis Et Applicata 40(1):89–98. DOI: 10.1111/j.1570-7458.1986.tb02159.x.
  • Tjallingii WF. 1994. Sieve element acceptance by aphids. European Journal of Entomology 91:47–52.
  • Tjallingii WF. 2001. Plant penetration by aphids as revealed by electrical penetration graphs. Aphids and Other Homopterous Insects 8:105–120.
  • Tjallingii WF. 2006. Salivary secretions by aphids interacting with proteins of phloem wound responses. Journal of Experimental Botany 57(4):739–745. DOI: 10.1093/jxb/erj088.
  • Tjallingii WF, Esch THH. 1993. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiological Entomology 18(3):317–328. DOI: 10.1111/j.1365-3032.1993.tb00604.x.
  • Togola A, Boukar O, Servent A, Chamarthi S, Tamo M, Fatokun C. 2020. Identification of sources of resistance in cowpea mini core accessions to Aphis craccivora Koch (Homoptera: Aphididae) and their biochemical characterization. Euphytica 216(6):88. DOI: 10.1007/s10681-020-02619-5.
  • Van Hoof HA. 1958. An investigation of the biological transmission of a non-persistent virus. Doctoral thesis (Van Putten and Oortmijer.
  • Vogelweith F, Thiéry D, Moret Y, Colin E, Motreuil S, Moreau J. 2014. Defense strategies used by two sympatric vineyard moth pests. Journal of Insect Physiology 64:54–61. DOI: 10.1016/j.jinsphys.2014.03.009.
  • Wen J, Lu LM, Nie ZL, Liu XQ, Zhang N, Ickert-Bond S, Gerrath J, Manchester SR, Boggan J, Chen ZD.2018.A new phylogenetic tribal classification of the grape family (Vitaceae).Journal of Systematics and Evolution 56(4):262–272. Special Issue: Recent Advances in Systematics and Evolution of the Grape Family Vitaceae. DOI: 10.1111/jse.12427.
  • Will T, Tjallingii WF, Thonnessen A, van Bel AJ. 2007. Molecular sabotage of plant defense by aphid saliva. Proceedings of the National Academy of Sciences of the United States of America 104(25):10536–10541. DOI: 10.1073/pnas.0703535104.
  • Wróblewska A, Dancewicz K, Gabryś B, Kordan B. 2012. EPG-registered probing behaviour of the pea aphid (Acyrthosiphon pisum Harris) on selected varieties of yellow lupin (Lupinus luteus L.) and narrow-leaved lupin (Lupinus angustifolius L.). Progress In Plant Protection 52(2):244–247.
  • Wróblewska-Kurdyk A, Gniłka R, Dancewicz K, Grudniewska A, Wawrzeńczyk C, Gabryś B. 2019. β-Thujone and its derivatives modify the probing behavior of the peach potato aphid. Molecules 24(10):1–16. DOI: 10.3390/molecules24101847.
  • Wu D, Zeng L, Zhou A, Xu Y. 2013. Effects of Solenopsis invicta (Hymenoptera: Formicidae) tending on the probing behavior of Phenacoccus solenopsis (Hemiptera: Pseudococcidae). Florida Entomologist 96(4):1343–1349. DOI: 10.1653/024.096.0413.
  • Zhang Y, Fan J, Francis F, Chen J. 2017. Watery saliva secreted by the grain aphid Sitobion avenae stimulates aphid resistance in wheat. Journal of Agricultural and Food Chemistry 65(40):8798–8805. DOI: 10.1021/acs.jafc.7b03141.