413
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pallas’ spadefoot Pelobates vespertinus (Pelobatidae, Amphibia) tolerates extreme hypoxia

ORCID Icon, ORCID Icon & ORCID Icon
Pages 431-442 | Received 31 Aug 2022, Accepted 08 Feb 2023, Published online: 05 Jun 2023

References

  • Armentrout D, Rose FL. 1971. Some physiological responses to anoxia in the Great Plains toad, Bufo cognatus. Comparative Biochemistry and Physiology 39A:447–455. DOI:10.1016/0300-9629(71)90308-2.
  • Belik VP. 2010. On amphibian fauna and ecology in the steppe part of the Don basin. Sovremennaya Gerpetologiya 10(3/4):89–100.
  • Berman DI, Alfimov AV, Bulakhova NA. 2020. Maps to play, or why doesn’t Pallas’ spadefoot toad go East. Priroda 11:22–36. DOI: 10.7868/S0032874X20110034.
  • Berman DI, Bulakhova NA. 2019. How winterkill suffocations stop the common frog spreading from Europe to Asia. Priroda 7:12–26. DOI: 10.7868/S0032874X19070020.
  • Berman DI, Bulakhova NA, Balan IV. 2017. The most Siberian frog. Priroda 8:3–14.
  • Berman DI, Bulakhova NA, Meshcheryakova EN. 2019. The Siberian wood frog survives for months underwater without oxygen. Scientific Reports 9:13594–13600. DOI: 10.1038/s41598-018-31974-6.
  • Berman DI, Bulakhova NA, Mesheryakova EN, Yermokhin MV, Tabachishin VG. 2019a. Cold-hardiness of the common spadefoot Pelobates fuscus (Pelobatidae, Anura, Amphibia). Cryo Letters 40(5):284–290.
  • Berman DI, Leirikh AN, Mikhailova EI. 1984. Wintering of the Siberian salamander Hynobius keyserlingi in the Upper Kolyma. Journal of Evolutionary Biochemistry and Physiology 20(3):323–327.
  • Bickler PE, Buck LT. 2007. Hypoxia tolerance in reptiles, amphibians, and fishes: Life with variable oxygen availability. Annual Review of Physiology 69:145–170. DOI: 10.1146/annurev.physiol.69.031905.162529.
  • Bleibtreu M. 1911. Weitere untersuchungen uber das verhalten des glykogens im eierstock der Rana fusca. Pflügers Archiv European Journal of Physiology 141(4–7):328–342. DOI:10.1007/BF01689701.
  • Boutilier RG. 2001. Mechanisms of metabolic defense against hypoxia in hibernating frogs. Respiration Physiology 128:365–377. DOI: 10.1016/S0034-5687(01)00312-7.
  • Boutilier RG, Donohoe PH, Tattersall GJ, West TG. 1997. Hypometabolic homeostasis in overwintering aquatic amphibians. Journal of Experimental Biology 200:387–400. DOI: 10.1242/jeb.200.2.387.
  • Bradford DF. 1983. Winterkill, oxygen relations, and energy metabolism of a submerged dormant amphibian, Rana muscosa. Ecology 64(5):1171–1183. DOI:10.2307/1937827/.
  • Bulakhova N, Alfimov A, Berman I. 2020. The eastern boundary of the geographic range of the Pallas’ spadefoot Pelobates vespertinus (Anura, Amphibia) is limited by overwintering temperatures. Herpetozoa 33:171–175. DOI: 10.3897/herpetozoa.33.e58050.
  • Bulakhova NA, Mazanaeva LF, Meshcheryakova EN, Berman DI. 2020a. Resistance of the Iranian long-legged wood frog (Rana macrocnemis Boulenger, 1885) (Amphibia, Anura) to negative temperatures on land and to hypoxia in water during overwintering. Herpetology Notes 13:1079–1086.
  • Bulakhova N, Shishikina K. 2022. Pre-hibernation energy reserves and their consumption during freezing in the moor frog Rana arvalis in Siberia. European Zoological Journal 89(1):556–567. DOI:10.1080/24750263.2022.2060357.
  • Bush FM. 1963. Effects of light and temperature on the gross composition of the toad, Bufo fowleri. Journal of Experimental Zoology 153(1):1–13. DOI:10.1002/jez.1401530102.
  • Canal J, Delattre J, Girard ML. 1972. Acquisitions nouvelles dans le dosage des lipides totaux du serum: Description d’une methode nephelemetrique. Part 1. Technique manuelle. Annales de Biologie Clinique 30:325–332.
  • Carvalho JE, Navas CA, Pereira IC. 2010. Energy and water in aestivating amphibians. Aestivation 141–169. DOI: 10.1007/978-3-642-02421-4_7.
  • Costanzo JP, Lee R. 1993. Cryoprotectant production capacity of the freeze-tolerant wood frog, Rana sylvatica. CANadian Journal of ZOOLogy 71:71–75. DOI:10.1139/z93-011.
  • Costanzo JP, Reynolds AM, Do Amaral MCF, Rosendale AJ, Lee RE. 2015. Cryoprotectants and extreme freeze tolerance in a subarctic population of the wood frog. PLoS One 10(2):e0117234. DOI:10.1371/journal.pone.0117234.
  • Debelo PV, Chibilev AA. 2013. Amphibians and reptiles of the Ural-Caspian region. Series: Natural Diversity of the Ural-Caspian Region. Ekaterinburg: RIO UB RAS.
  • Donohoe PH, Boutilier RG. 1998. The protective effects of metabolic rate depression in hypoxic cold submerged frogs. Respiration Physiology 111(3):325–336. DOI: 10.1016/S0034-5687(97)00125-4.
  • Donohoe PH, West TG, Boutilier RG. 1998. Respiratory, metabolic and acid–base correlates of aerobic metabolic rate reduction in overwintering frogs. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 274:704–710. DOI: 10.1152/ajpregu.1998.274.3.R704.
  • Feder ME, Burggren WW. 1992. Environmental physiology of the amphibians. Chicago: University of Chicago Press.
  • Fitzpatrick LC. 1976. Life history patterns of storage and utilization of lipids for energy in amphibians. American Zoologist 16(4):725–732. DOI:10.1093/icb/16.4.725.
  • Flanigan J, Withers P, Storey K, Guppy M. 1990. Changes in enzyme binding and activity during aestivation in the frog Neobatrachus pelobatoides. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 96(1):67–71.
  • Gamperl AK, Milsom WK, Farrell AP, Wang T. 1999. Cardiorespiratory responses of the toad (Bufo marinus) to hypoxia at two different temperatures. Journal of Experimental Biology 202:3647–3658. DOI: 10.1242/jeb.202.24.3647.
  • Garanin VI. 1983. Amphibians and reptiles of the Volga-Kama region. Moscow: Nauka Press.
  • Glass ML, Fernandes MS, Soncini R, Glass H, Wasser JS. 1998. Effects of dry season dormancy on oxygen uptake, heart rate, and blood pressures in the toad, Bufo paracnemis. Journal of Experimental Zoology 279(4):330–336. DOI:10.1002/(SICI)1097-010X(19971101)279:4<330::AID-JEZ2>3.0.CO;2-P.
  • Guttman S. 1974. Anoxia tolerance in two species of toads, Bufo valliceps and Bufo woodhousei. Comparative Biochemistry and Physiology Part A: Physiology 47(3):867–870. DOI:10.1016/0300-9629(74)90461-7.
  • Hermes-Lima M, Storey KB. 1996. Relationship between anoxia exposure and antioxidant status in the frog Rana pipiens. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 271:991–996. DOI: 10.1152/ajpregu.1996.271.4.R918.
  • Hochachka PW, Guppy M. 1987. Metabolic arrest and the control of biological time. Cambridge: Harvard Univ. Press.
  • Hong SK, Park CS, Park YS, Kim IK. 1968. Seasonal changes of antidiuretic hormone action on sodium transport across frog skin. American Journal of Phvsiology 215:439–443. DOI: 10.1152/ajplegacy.1968.215.2.439.
  • Iela L, Milone M, Filomena M, Rakesh C, Rastogi K, Chieffi G. 1979. Role of lipids in the physiology of the testis of Rana esculenta: Annual changes in the lipid and protein content of the liver, fat body, testis and plasma. Bollettino di Zoologia 46(1–2):11–16. DOI:10.1080/11250007909440272.
  • Irwin JT, Lee JRE. 2003. Geographic variation in energy storage and physiological responses to freezing in the gray treefrogs Hyla versicolor and H. chrysoscelis. Journal of Experimental Biology 206(16):2859–2867. DOI:10.1242/jeb.00500.
  • Iskakova K. 1959. Amphibians of Kazakhstan. Alma-Ata: Publishing Houses of the Academy of Sciences of the Kazakh SSR.
  • Issartel J, Hervant F, de Fraipont M, Clobert J, Voituron Y. 2009. High anoxia tolerance in the subterranean salamander Proteus anguinus without oxidative stress nor activation of antioxidant defenses during reoxygenation. Journal of Comparative Physiology B 179:543–551. DOI: 10.1007/s00360-008-0338-9.
  • Kato K. 1910. Uber das verhalten des glykogenes im eierstocke der frosche zu den verschiedenen jahreszeiten. Pflügers Archiv European Journal of Physiology 132:545–579. DOI: 10.1007/BF01683638.
  • Knickerbocker DL, Lutz PL. 2001. Slow ATP loss and the defense of ion homeostasis in the anoxic frog brain. Journal of Experimental Biology 204:3547–3551. DOI: 10.1242/jeb.204.20.3547.
  • Koskela P, Pasanen S. 1975. Effect of thermal acclimation on seasonal liver and muscle glycogen content in the common frog, Rana temporaria L. Comparative Biochemistry and Physiology Part A: Physiology 50(4):723–727. DOI:10.1016/0300-9629(75)90135-8.
  • Kruhøffer M, Glass ML, Abe AS, Johansen K. 1987. Control of breathing in an amphibian, Bufo paracnemius: Effects of temperature and hypoxia. Respiration Physiology 69:267–275. DOI: 10.1016/0034-5687(87)90033-8.
  • Lavelle P, Spain AV. 2001. Soil ecology. New York-Boston-Dordrecht-London- Moscow: Kluwer Academic Publishers.
  • McAneney J, Gheshmy A, Uthayalingam S, Reid SG. 2006. Chronic hypoxia modulates NMDA-mediated regulation of the hypoxic ventilatory response in an amphibian, Bufo marinus. Respiratory Physiology & Neurobiology 153(1): 23–38. DOI:10.1016/j.resp.2005.09.001.
  • McClanachan L. 1967. Adaptations of the spadefoot toad, Scaphiopus couchi, to desert environments. Comparative Biochemistry and Physiology 20:73–99. DOI:10.1016/0010-406X(67)90726-8.
  • Mizell S. 1965. Seasonal changes in energy reserves in the common frog, Rana pipiens. Journal of Cellular and Comparative Physiology 66(2):251–258. DOI:10.1002/jcp.1030660212.
  • Moreira DC, Carvajalino-Fernández JM, Silva WP, Kuzniewski F, Navas CA, de Carvalho JE, and Hermes-Lima M. 2020. Preparation for oxidative stress in Proceratophrys cristiceps (Anura, Odontophrynidae) naturally estivating in the Brazilian Caatinga. The Science of the Total Environment 723:137957. DOI:10.1016/j.scitotenv.2020.137957.
  • Morton ML. 1981. Seasonal changes in total body lipid and liver weight in the Yosemite toad. Copeia 1981(1):234–238. DOI:10.2307/1444067.
  • Pasanen S, Koskela P. 1974. Seasonal and age variation in the metabolism of the common frog, Rana temporaria L, in northern Finland. Comparative Biochemistry and Physiology A 47(2):635–654. DOI:10.1016/0300-9629(74)90027-9.
  • Pinder AW, Storey KB, Ultsch GR. 1992. Estivation and hibernation. In: Feder ME, Burggren WW, editors. Environmental Physiology of the Amphibians. Chicago: Illinois, Univ. pp. 250–274.
  • Pörtner HO, MacLatchy LM, Toews DP. 1991. Metabolic responses of the toad Bufo marinus to environmental hypoxia: An analysis of the critical Po2. Physiological Zoology 64(2):836–849. DOI:10.1086/physzool.64.3.30158210.
  • Rossi GS, Cramp RL, Wright PA, Franklin CE. 2020. Frogs seek hypoxic microhabitats that accentuate metabolic depression during dormancy. Journal of Experimental Biology 223:jeb218743. DOI: 10.1242/jeb.218743.
  • Schlaghecke R, Blom V. 1978. Seasonal variations in fat body metabolism of the green frog Rana esculenta (L.). Experientia 34:456–457. DOI: 10.1007/BF01915320.
  • Severin SE, Solovyeva GA. 1989. Praktikum po biohimii. Moscow: MSU.
  • Seymour RS. 1973a. Energy metabolism of dormant spadefoot toads (Scaphiopus). Copeia 1973(3):435–445. DOI:10.2307/1443107.
  • Seymour RS. 1973b. Gas exchange in spadefoot toads beneath the ground. Copeia 1973(3):452–460. DOI:10.2307/1443109.
  • Shekhovtsov SV, Bulakhova NA, Tsentalovich YP, Zelentsova EA, Yanshole LV, Meshcheryakova EN, Berman DI. 2020. Metabolic response of the Siberian wood frog Rana amurensis to extreme hypoxia. Scientific Reports 10:14604. DOI: 10.1038/s41598-020-71616-4.
  • Smagin AV 2005. Gas phase of soil Moscow: MSU.
  • Smith CL. 1950. Seasonal changes in blood sugar, fat bodies, liver glycogen and gonads in the common frog (Rana temporaria). Journal of Experimental Biology 26(4):412–429. DOI:10.1242/jeb.26.4.412.
  • Storey KB, Storey JM. 1984. Biochemical adaptation for freezing tolerance in the wood frog, Rana sylvatica. Comparative Biochemistry and Physiology B 155:29–36. DOI: 10.1007/BF00688788.
  • Székely D, Cogălniceanu D, Székely P, Denoël M. 2018. Dryness affects burrowing depth in a semi-fossorial amphibian. Journal of Arid Environments 155:79–81. DOI:10.1016/j.jaridenv.2018.02.003.
  • Tarnoky K, Nagy S. 1963. Spectrophotometric determination of glycogen with o-toluidine. Clinica Chimica Acta 8:627–628. DOI: 10.1016/0009-8981(63)90116-5.
  • Tattersall GJ, Ultsch GR. 2008. Physiological ecology of aquatic overwintering in ranid frogs. Biological Reviews 83:119–140. DOI: 10.1111/j.1469-185X.2008.00035.x.
  • Ultsch GR, Anderson JF 1986. The respiratory microenvironment within the burrows of gopher tortoises (Gopherus polyphemus). Copeia 1986(3):787–795.
  • van Beurden EK. 1980. Energy metabolism of dormant Australian water-holding frogs (Cyclorana platycephalus). Copeia 1980:787–799. DOI: 10.2307/1444458.
  • Wang GL, Jiang BH, Rue EA, Semenza GL. 1994. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proceeding of the National Academy of Sciences USA 92(12):5510–5514. DOI:10.1073/pnas.92.12.55.
  • Wells KD. 2007. The ecology and behavior of amphibians. Chicago: University of Chicago Press.
  • Withers P. 1978. Models of diffusion-mediated gas exchange in animal burrows. American Naturalist 112(988):1101–1112. DOI:10.1086/283349.
  • Wood S, Malvin G. 1991. Physiological significance of behavioral hypothermia in hypoxic toads (Bufo marinus). Journal of Experimental Biology 159(1):203–215. DOI:10.1242/jeb.159.1.203.
  • Yermokhin MV, Tabachishin VG, Ivanov GA. 2014. Comparative analysis of body condition indexes efficiency of Pelobates fuscus toadlets. Sovremennaya Gerpetologiya 14(3–4):92–102.
  • Yermokhin MV, Tabachishin VG, Ivanov GA, Bogoslovsky DS. 2013. Features of the location of Pelobates fuscus in the soil profile in the Medveditsa River valley at a beginning hibernation period. Sovremennaya Gerpetologiya 13(1–2):22–26.