319
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Changes in histamine, HSF1, Cysteinyl leukotriene, TLR1 and TLR2 in Galleria mellonella hemolymph after Conidiobolus coronatus infection

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 762-774 | Received 17 Apr 2023, Accepted 14 Oct 2023, Published online: 06 Nov 2023

References

  • Abravaya K, Myers MP, Murphy SP, Morimoto RI. 1992. The human heat shock protein hsp70 interacts with HSF, the transcription factor that regulates heat shock gene expression. Genes & Development 6(7):1153–1164. DOI: 10.1101/gad.6.7.1153.
  • Alkan M, Sayes F, Ramadan A, Machavoine F, Dy M, Schneider E, Thieblemont N. 2018. Basophil activation through TLR2 and TLR4 signaling pathways. AIMS Allergy and Immunology 2(3):126–140. DOI: 10.3934/Allergy.2018.3.126.
  • Ashida M, Brey PT. 1995. Role of the integument in insect defense: Pro-phenol oxidase cascade in the cuticular matrix. Proceedings of the National Academy of Sciences of the United States of America 92(23):10698–10702. DOI: 10.1073/pnas.92.23.10698.
  • Bai Y, Suzuki T. 2022. Activity-dependent circuitry plasticity via the regulation of the histamine receptor level in the Drosophila visual system. Molecular & Cellular Neuroscience 119:103703. DOI: 10.1016/j.mcn.2022.103703.
  • Bania J, Samborski J, Bogus M, Polanowski A. 2006. Specificity of an extracellular proteinase from Conidiobolus coronatus and its inhibition by an inhibitor from insect hemolymph. Archives of Insect Biochemistry and Physiology 62(4):186–196. DOI: 10.1002/arch.20134.
  • Binder U, Maurer E, Lass-Florl C. 2016. Galleria mellonella: An invertebrate model to study pathogenicity in correctly defined fungal species. Fungal Biology 120(2):288–295. DOI: 10.1016/j.funbio.2015.06.002.
  • Bisgaard H. 2001. Pathophysiology of the cysteinyl leukotrienes and effects of leukotriene receptor antagonists in asthma. Allergy 56(Suppl 66):7–11. DOI: 10.1034/j.1398-9995.56.s66.2.x.
  • Boguś M, Szczepanik M. 2000. Histopathology of Conidiobolus coronatus (Entomophthorales) infection in Galleria mellonella (Lepidoptera) larvae. Acta Parasitologica 45(1):48–54.
  • Bogus MI, Kędra E, Bania J, Szczepanik M, Czygier M, Jabłoński P, Pasztaleniec A, Samborski J, Mazgajska J, Polanowski A. 2007. Different defense strategies of Dendrolimus pini, Galleria mellonella, and Calliphora vicina against fungal infection. Journal of Insect Physiology 53(9):909–922. DOI: 10.1016/j.jinsphys.2007.02.016.
  • Boguś MI, Ligęza‐Żuber M, Polańska MA, Mosiewicz M, Włóka E, Sobocińska M. 2018. Fungal infection causes changes in the number, morphology and spreading ability of Galleria mellonella haemocytes. Physiological Entomology 43(3):214–226. DOI: 10.1111/phen.12246.
  • Bogus MI, Wieloch W, Ligeza-Zuber M. 2017. Coronatin-2 from the entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella larvae and incapacitates hemocytes. Bulletin of Entomological Research 107(1):66–76. DOI: 10.1017/S0007485316000638.
  • Bogus MI, Wrońska AK, Kaczmarek A, Boguś-Sobocińska M. 2021. In vitro screening of 65 mycotoxins for insecticidal potential. PLoS One 16(3):e0248772. DOI: 10.1371/journal.pone.0248772.
  • Branco A, Yoshikawa FS, Pietrobon AJ, Sato MN. 2018. Role of histamine in modulating the immune response and inflammation. Mediators of Inflammation 2018:9524075. DOI: 10.1155/2018/9524075.
  • Browne N, Heelan M, Kavanagh K. 2013. An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence 4(7):597–603. DOI: 10.4161/viru.25906.
  • Carswell H, Young JM. 1985. The characteristics of histamine H1-agonist-stimulated breakdown of inositol phospholipids differ between regions of Guinea-pig brain. Biochemical Society Transactions 13(6):1188–1189. DOI: 10.1042/bst0131188.
  • Chang YW, Wang Y-C, Zhang X-X, Iqbal J, Lu M-X, Du Y-Z. 2021. Transcriptional regulation of small heat shock protein genes by heat shock factor 1 (HSF1) in Liriomyza trifolii under heat stress. Cell Stress and Chaperones 26(5):835–843. DOI: 10.1007/s12192-021-01224-2.
  • Chen W, Geng S-L, Song Z, Li Y-J, Wang H, Cao J-Y. 2019. Alternative splicing and expression analysis of HSF1 in diapause pupal brains in the cotton bollworm, Helicoverpa armigera. Pest Management Science 75(5):1258–1269. DOI: 10.1002/ps.5238.
  • Chtarbanova S, Imler JL. 2011. Microbial sensing by Toll receptors: A historical perspective. Arteriosclerosis, Thrombosis, and Vascular Biology 31(8):1734–1738. DOI: 10.1161/ATVBAHA.108.179523.
  • Clos J, Rabindran S, Wisniewski J, Wu C. 1993. Induction temperature of human heat shock factor is reprogrammed in a Drosophila cell environment. Nature 364(6434):252–255. DOI: 10.1038/364252a0.
  • Coates CJ, Lim J, Harman K, Rowley AF, Griffiths DJ, Emery H, Layton W. 2019. The insect, Galleria mellonella, is a compatible model for evaluating the toxicology of okadaic acid. Cell Biology and Toxicology 35(3):219–232. DOI: 10.1007/s10565-018-09448-2.
  • Cook SM, McArthur JD. 2013. Developing Galleria mellonella as a model host for human pathogens. Virulence 4(5):350–353. DOI: 10.4161/viru.25240.
  • Dayalan Naidu S, Dinkova-Kostova AT. 2017. Regulation of the mammalian heat shock factor 1. The FEBS Journal 284(11):1606–1627. DOI: 10.1111/febs.13999.
  • Denno ME, Privman E, Borman RP, Wolin DC, Venton BJ. 2016. Quantification of histamine and Carcinine in Drosophila melanogaster tissues. ACS Chemical Neuroscience 7(3):407–414. DOI: 10.1021/acschemneuro.5b00326.
  • Desai A, Siddhapara MR, Patel PK, Prajapati AP. 2019. Biology of greater wax moth, Galleria mellonella. On artificial diet. Journal of Experimental Zoology, India 22(2):1267–1272.
  • Desalermos A, Fuchs BB, Mylonakis E. 2012. Selecting an invertebrate model host for the study of fungal pathogenesis. PLoS Pathogens 8(2):e1002451. DOI: 10.1371/journal.ppat.1002451.
  • Elias MS, Evans PD. 1983a. Histamine in the insect nervous system: Distribution, synthesis and metabolism. Journal of Neurochemistry 41(2):562–568. DOI: 10.1111/j.1471-4159.1983.tb04776.x.
  • Elias MS, Evans PD. 1983b. Histamine in the insect nervous system: Distribution, synthesis and metabolism. Journal of Neurochemistry 41(2):562–568. DOI: 10.1111/j.1471-4159.1983.tb04776.x.
  • Ellis JD, Graham JR, Mortensen A. 2013. Standard methods for wax moth research. Journal of Apicultural Research 52(1):1–17. DOI: 10.3896/IBRA.1.52.1.10.
  • Fasasi K, Malaka SLO. 2006. Life cycle and impact of greater waxmoth, Galleria mellonella L. (Lepidoptera: Pyralidae) feeding on stored beeswax. Nigerian Journal of Entomology 23:13–17. DOI: 10.36108/NJE/6002/32.0130.
  • Ferrandon D, Imler J-L, Hetru C, Hoffmann JA. 2007. The Drosophila systemic immune response: Sensing and signalling during bacterial and fungal infections. Nature Reviews: Immunology 7(11):862–874. DOI: 10.1038/nri2194.
  • Fischer N, Ruef C, Ebnöther C, Bächli EB. 2008. Rhinofacial Conidiobolus coronatus infection presenting with nasal enlargement. Infection 36(6):594–596. DOI: 10.1007/s15010-008-8056-5.
  • Garbuz DG. 2017. Regulation of heat shock gene expression in response to stress. Molekuliarnaia Biologiia 51(3):400–417. DOI: 10.1134/S0026893317020108.
  • Gottar M, Gobert V, Matskevich AA, Reichhart JM, Wang C, Butt TM, Belvin M, Hoffmann JA, Ferrandon D. 2006. Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127(7):1425–1437. DOI: 10.1016/j.cell.2006.10.046.
  • Gusach A, Luginina A, Marin E, Brouillette RL, Besserer-Offroy É, Longpré J-M, Ishchenko A, Popov P, Patel N, Fujimoto T, Maruyama T, Stauch B, Ergasheva M, Romanovskaia D, Stepko A, Kovalev K, Shevtsov M, Gordeliy V, Han GW, Katritch V, Borshchevskiy V, Sarret P, Mishin A, Cherezov V. 2019. Structural basis of ligand selectivity and disease mutations in cysteinyl leukotriene receptors. Nature Communications 10(1):5573. DOI: 10.1038/s41467-019-13348-2.
  • Hosamani V, Hanumantha Swamy BC, Kattimani KN, Kalibavi CM. 2017. Studies on Biology of greater wax moth (Galleria mellonella L.). International Journal of Current Microbiology and Applied Sciences (IJCMAS) 6(11):3811–3815. DOI: 10.20546/ijcmas.2017.611.447.
  • Huang X, Liu Y, Xi L, Zeng K, Mylonakis E. 2018. Galleria mellonella as a model invertebrate host for the study of muriform cells of dematiaceous fungi. Future Microbiology 13(9):1021–1028. DOI: 10.2217/fmb-2018-0036.
  • Jacobsen ID. 2014. Galleria mellonella as a model host to study virulence of Candida. Virulence 5(2):237–239. DOI: 10.4161/viru.27434.
  • Jiang H, Vilcinskas A, Kanost MR. 2010. Immunity in lepidopteran insects. Advances in Experimental Medicine and Biology 708:181–204.
  • Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. 2020. Conidiobolus coronatus induces oxidative stress and autophagy response in Galleria mellonella larvae. PLoS One 15(2):e0228407. DOI: 10.1371/journal.pone.0228407.
  • Kazek M, Kaczmarek A, Wrońska AK, Boguś MI. 2021. Dodecanol, metabolite of entomopathogenic fungus Conidiobolus coronatus, affects fatty acid composition and cellular immunity of Galleria mellonella and calliphora vicina. Scientific Reports 11(1):15963. DOI: 10.1038/s41598-021-95440-6.
  • Kedra E, Bogus MI. 2006. The influence of Conidiobolus coronatus on phagocytic activity of insect hemocytes. Journal of Invertebrate Pathology 91(1):50–52. DOI: 10.1016/j.jip.2005.06.013.
  • Kleino A, Silverman N. 2014. The Drosophila IMD pathway in the activation of the humoral immune response. Developmental and Comparative Immunology 42(1):25–35. DOI: 10.1016/j.dci.2013.05.014.
  • Kosano H, Stensgard B, Charlesworth MC, McMahon N, Toft D. 1998. The assembly of progesterone receptor-Hsp90 complexes using purified proteins. The Journal of Biological Chemistry 273(49):32973–32979. DOI: 10.1074/jbc.273.49.32973.
  • Kumar H, Kawai T, Akira S. 2009. Toll-like receptors and innate immunity. Biochemical and Biophysical Research Communications 388(4):621–625. DOI: 10.1016/j.bbrc.2009.08.062.
  • Kwadha CA, Ong’amo GO, Ndegwa PN, Raina SK, Fombong AT. 2017. The biology and control of the Greater Wax Moth, Galleria mellonella. Insects 8:8(2. DOI: 10.3390/insects8020061.
  • Lange A, Beier S, Huson DH, Parusel R, Iglauer F, Frick JS. 2018. Genome Sequence of Galleria mellonella (Greater Wax Moth). Genome Announcements 6(2). DOI: 10.1128/genomeA.01220-17.
  • Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. Annual Review of Immunology 25(1):697–743. DOI: 10.1146/annurev.immunol.25.022106.141615.
  • Lindsay SA, Wasserman SA. 2014. Conventional and non-conventional Drosophila Toll signaling. Developmental and Comparative Immunology 42(1):16–24. DOI: 10.1016/j.dci.2013.04.011.
  • Lionakis MS. 2011. Drosophila and Galleria insect model hosts: New tools for the study of fungal virulence, pharmacology and immunology. Virulence 2(6):521–527. DOI: 10.4161/viru.2.6.18520.
  • McCurdy JD, Olynych TJ, Maher LH, Marshall JS. 2003. Cutting edge: Distinct toll-like receptor 2 activators selectively induce different classes of mediator production from human mast cells. Journal of Immunology (Baltimore, Md: 1950) 170(4):1625–1629. DOI: 10.4049/jimmunol.170.4.1625.
  • Michel T, Reichhart J-M, Hoffmann JA, Royet J. 2001. Drosophila toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 414(6865):756–759. DOI: 10.1038/414756a.
  • Moncada DC, Montes M, Molina V, Velásquez JB, Gómez CI. 2016. Orofacial infection by Conidiobolus coronatus. Biomedica 36:15–22. DOI: 10.7705/biomedica.v36i2.2806.
  • Myllymaki H, Ramet M. 2014. JAK/STAT pathway in Drosophila immunity. Scandinavian Journal of Immunology 79(6):377–385. DOI: 10.1111/sji.12170.
  • Ozato K, Tsujimura H, Tamura T. 2002. Toll-like receptor signaling and regulation of cytokine gene expression in the immune system. Biotechniques 33:66–8, 70, 72 passim. DOI: 10.2144/Oct0208.
  • Park HS, Jung HY, Park EY, Kim J, Lee WJ, Bae YS. 2004. Cutting edge: Direct interaction of TLR4 with NAD(P)H oxidase 4 isozyme is essential for lipopolysaccharide-induced production of reactive oxygen species and activation of NF-kappa B. Journal of Immunology (Baltimore, Md: 1950) 173(6):3589–3593. DOI: 10.4049/jimmunol.173.6.3589.
  • Peters-Golden M, Gleason MM, Togias A. 2006. Cysteinyl leukotrienes: multi-functional mediators in allergic rhinitis. Clinical and Experimental Allergy: Journal of the British Society for Allergy and Clinical Immunology 36(6):689–703. DOI: 10.1111/j.1365-2222.2006.02498.x.
  • Piacenza N, Kaltner F, Maul R, Gareis M, Schwaiger K, Gottschalk C. 2021. Distribution of T-2 toxin and HT-2 toxin during experimental feeding of yellow mealworm (Tenebrio molitor). Mycotoxin Research 37(1):11–21. DOI: 10.1007/s12550-020-00411-x.
  • Pockley AG, Henderson B. 2018. Extracellular cell stress (heat shock) proteins—immune responses and disease: An overview. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences 373(1738):20160522. DOI: 10.1098/rstb.2016.0522.
  • Priyadarsini S, Sahoo M, Sahu S, Jayabalan R, Mishra M. 2019. An infection of Enterobacter ludwigii affects development and causes age-dependent neurodegeneration in Drosophila melanogaster. Invertebrate Neuroscience: In 19(4):13. DOI: 10.1007/s10158-019-0233-y.
  • Rabindran SK, Giorgi G, Clos J, Wu C. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proceedings of the National Academy of Sciences of the United States of America 88(16):6906–6910. DOI: 10.1073/pnas.88.16.6906.
  • Ramarao N, Nielsen-Leroux C, Lereclus D. 2012. The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. Journal of Visualized Experiments: JoVe 2012(70):e4392. DOI: 10.3791/4392.
  • Renwick J, Daly P, Reeves EP, Kavanagh K. 2006. Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination. Mycopathologia 161(6):377–384. DOI: 10.1007/s11046-006-0021-1.
  • Rillich J, Stevenson PA. 2018. Serotonin mediates depression of aggression after acute and chronic social defeat stress in a model insect. Frontiers in Behavioral Neuroscience 12:233. DOI: 10.3389/fnbeh.2018.00233.
  • Sehnal F. 1966. Kritisches studium der Bionomie und Biometrik der in Verschiedenen Lebensbedingungen Gezuchteten Wachsmotte Galleria Mellonella L (Lepidopera). Zeitschrift Fur Wissenschaftliche Zoologie 174(1–2):53–.
  • Shamovsky I, Nudler E. 2008. New insights into the mechanism of heat shock response activation. Cellular and Molecular Life Sciences: CMLS 65(6):855–861. DOI: 10.1007/s00018-008-7458-y.
  • Shilova V, Zatsepina O, Zakluta A, Karpov D, Chuvakova L, Garbuz D, Evgen’ev M. 2020. Age-dependent expression profiles of two adaptogenic systems and thermotolerance in Drosophila melanogaster. Cell Stress and Chaperones 25(2):305–315. DOI: 10.1007/s12192-020-01074-4.
  • Singh RK, Gupta S, Dastidar S, Ray A. 2010. Cysteinyl leukotrienes and their receptors: Molecular and functional characteristics. Pharmacology 85(6):336–349. DOI: 10.1159/000312669.
  • Smith TL. 1965. External morphology of the Larva, Pupa, and adult of the Wax Moth, Galleria mellonella L. Journal of the Kansas Entomological Society 38(3):287–310.
  • Stokes BA, Yadav S, Shokal U, Smith LC, Eleftherianos I. 2015. Bacterial and fungal pattern recognition receptors in homologous innate signaling pathways of insects and mammals. Frontiers in Microbiology 6:19. DOI: 10.3389/fmicb.2015.00019.
  • Swamy B. 2008. Bionomics and biometrics of Greater Wax Moth Galleria mellonella Linnaeus. Asian Journal of Biological Sciences 3(1):49–51.
  • Szatmary Z. 2012. Molecular biology of toll-like receptors. General Physiology and Biophysics 31(4):357–366. DOI: 10.4149/gpb_2012_048.
  • Talreja J, Kabir MH, B Filla M, Stechschulte DJ, Dileepan KN. 2004. Histamine induces Toll-like receptor 2 and 4 expression in endothelial cells and enhances sensitivity to Gram-positive and Gram-negative bacterial cell wall components. Immunology 113(2):224–233. DOI: 10.1111/j.1365-2567.2004.01946.x.
  • Thivierge M, Stankova J, Rola-Pleszczynski M. 2006. Toll-like receptor agonists differentially regulate cysteinyl-leukotriene receptor 1 expression and function in human dendritic cells. The Journal of Allergy and Clinical Immunology 117(5):1155–1162. DOI: 10.1016/j.jaci.2005.12.1342.
  • Uvnas B. 1964. Release processes in mast cells + their activation by injury. Annals of the New York Academy of Sciences 116(A3):880–. DOI: 10.1111/j.1749-6632.1964.tb52554.x.
  • Uvnas B, Aborg CH, Bergendorff A. 1970. Storage of histamine in mast cells. Evidence for an ionic binding of histamine to protein carboxyls in the granule heparin-protein complex. Acta Physiologica Scandinavica: Supplementum 336:1–26.
  • Vabulas RM, Wagner H, Schild H. 2002. Heat shock proteins as ligands of toll-like receptors. Current Topics in Microbiology and Immunology 270:169–184.
  • Valanne S, Wang JH, Ramet M. 2011. The Drosophila Toll signaling pathway. Journal of Immunology (Baltimore, Md: 1950) 186(2):649–656. DOI: 10.4049/jimmunol.1002302.
  • Vihervaara A, Sistonen L. 2014. HSF1 at a glance. Journal of Cell Science 127(Pt 2):261–266. DOI: 10.1242/jcs.132605.
  • Vogel H, Altincicek B, Glöckner G, Vilcinskas A. 2011. A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella. BMC Genomics 12(1):308. DOI: 10.1186/1471-2164-12-308.
  • Weber AN, Tauszig-Delamasure S, Hoffmann JA, Lelièvre E, Gascan H, Ray KP, Morse MA, Imler J-L, Gay NJ. 2003. Binding of the Drosophila cytokine Spätzle to Toll is direct and establishes signaling. Nature Immunology 4(8):794–800. DOI: 10.1038/ni955.
  • White M. 1999. Mediators of inflammation and the inflammatory process. The Journal of Allergy and Clinical Immunology 103(3 Pt 2):S378–81. DOI: 10.1016/S0091-6749(99)70215-0.
  • Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH. 1998. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an Hsp90-binding agent. Molecular Cell Biology 18(3):1517–1524. DOI: 10.1128/MCB.18.3.1517.
  • Wieloch W, Boguś MI, Ligęza M, Koszela-Piotrowska I, Szewczyk A. 2011. Coronatin-1 isolated from entomopathogenic fungus Conidiobolus coronatus kills Galleria mellonella hemocytes in vitro and forms potassium channels in planar lipid membrane. Toxicon 58(4):369–379. DOI: 10.1016/j.toxicon.2011.07.007.
  • Włóka E, Boguś MI, Wrońska AK, Drozdowski M, Kaczmarek A, Sobich J, Gołębiowski M. 2022. Insect cuticular compounds affect Conidiobolus coronatus (Entomopthorales) sporulation and the activity of enzymes involved in fungal infection. Scientific Reports 12(1):13641. DOI: 10.1038/s41598-022-17960-z.
  • Wojda I. 2017. Immunity of the greater wax moth Galleria mellonella. Insect Science 24(3):342–357. DOI: 10.1111/1744-7917.12325.
  • Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249(4975):1431–1433. DOI: 10.1126/science.1698311.
  • Wronska AK, Kaczmarek A, Kazek M, Boguś MI. 2021. Infection of Galleria mellonella (Lepidoptera) larvae with the Entomopathogenic fungus Conidiobolus coronatus (Entomophthorales) induces apoptosis of hemocytes and affects the concentration of eicosanoids in the Hemolymph. Frontiers in Physiology 12:774086. DOI: 10.3389/fphys.2021.774086.
  • Wronska AK, Bogus MI. 2019. Harman and norharman, metabolites of the entomopathogenic fungus Conidiobolus coronatus (Entomophthorales), affect the serotonin levels and phagocytic activity of hemocytes, insect immunocompetent cells, in Galleria mellonella (Lepidoptera). Cell Bioscience 9:29.
  • Wronska AK, Bogus MI. 2020. Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (Lepidoptera) hemolymph are affected by infection with Conidiobolus coronatus (Entomophthorales). PloS One 15(2):e0228556. DOI: 10.1371/journal.pone.0228556.
  • Wronska AK, Boguś MI, Kaczmarek A, Kazek M. 2018. Harman and norharman, metabolites of entomopathogenic fungus Conidiobolus coronatus (Entomopthorales), disorganize development of Galleria mellonella (Lepidoptera) and affect serotonin-regulating enzymes. PLoS One 13(10):e0204828. DOI: 10.1371/journal.pone.0204828.
  • Wronska AK, Boguś MI, Włóka E, Kazek M, Kaczmarek A, Zalewska K. 2018. Cuticular fatty acids of Galleria mellonella (Lepidoptera) inhibit fungal enzymatic activities of pathogenic Conidiobolus coronatus. PLoS One 13(3):e0192715. DOI: 10.1371/journal.pone.0192715.
  • Wronska AK, Kaczmarek A, Sobich J, Grzelak S, Boguś MI. 2022. Intracellular cytokine detection based on flow cytometry in hemocytes from Galleria mellonella larvae: A new protocol. PLoS One 17(9):e0274120. DOI: 10.1371/journal.pone.0274120.
  • Wrońska AK, Loor JJ. 2018. Cuticular fatty acids of Galleria mellonella (Lepidoptera) inhibit fungal enzymatic activities of pathogenic Conidiobolus coronatus. PloS One 13(3):e0192715. DOI: 10.1371/journal.pone.0192715.
  • Wu G, Liu Y, Ding Y, Yi Y. 2016. Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity. Tissue and Cell 48(4):297–304. DOI: 10.1016/j.tice.2016.06.007.
  • Xu Y, Lindquist S. 1993. Heat-shock protein Hsp90 governs the activity of pp60v-src kinase. Proceedings of the National Academy of Sciences of the United States of America 90(15):7074–7078. DOI: 10.1073/pnas.90.15.7074.