259
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Do cuckoo calls affects red-backed shrike settlement pattern? An experimental approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon & show all
Pages 550-558 | Received 20 Jul 2023, Accepted 14 Apr 2024, Published online: 30 May 2024

References

  • Adamík P, Hušek J, Cepák J. 2009. Rapid decline of common cuckoo Cuculus canorus parasitism in red-backed shrikes Lanius collurio. Ardea 97(1):17–22. DOI: 10.5253/078.097.0103.
  • Amo L, Tomás G, López-García A. 2017. Role of chemical and visual cues of mammalian predators in nest defense in birds. Behavioral Ecology and Sociobiology 71(3):1–9. DOI: 10.1007/s00265-017-2281-9.
  • Antczak M, Golawski A, Kuzniak S, Tryjanowski P. 2009. Costly replacement: How do different stages of nest failure affect clutch replacement in the redbacked shrikes Lanius collurio? Ethology Ecology & Evolution 21(2):127–136. DOI: 10.1080/08927014.2009.9522501.
  • Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67(1):1–48. DOI: 10.18637/jss.v067.i01.
  • Bates D, Maechler M, Bolker B, Walker S. 2014. lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7. Available: http://CRAN.R-project.org/package=lme4.
  • Bravo C, Sarasa M, Bretagnolle V, Pays O. 2023. Hedgerows interact with forests to shape the abundance of mesopredators and their predation rate on eggs in farmland landscapes. Science of the Total Environment 901:165712. DOI: 10.1016/j.scitotenv.2023.165712.
  • Brooker M, Brooker L. 1996. Acceptance by the splendid fairy-wren of parasitism by Horsfield’s bronze-cuckoo: Further evidence for evolutionary equilibrium in brood parasitism. Behavioral Ecology 7(4):395–407. DOI: 10.1093/beheco/7.4.395.
  • Campobello D, Sealy SG. 2011. Use of social over personal information enhances nest defense against avian brood parasitism. Behavioral Ecology 22(2):422–428. DOI: 10.1093/beheco/arq225.
  • Cunha FCR, Griesser M. 2021. Who do you trust? Wild birds use social knowledge to avoid being deceived. Science Advances 7(22):1–7. DOI: 10.1126/sciadv.aba2862.
  • Davies NB. 2011. Cuckoo adaptations: Trickery and tuning. Journal of Zoology 284(1):1–14. DOI: 10.1111/j.1469-7998.2011.00810.x.
  • Deng Z, Lloyd H, Xia C, Møller AP, Liang W, Zhang Y. 2019. Components of variation in female common cuckoo calls. Behavioral Processes 158:106–112. DOI: 10.1016/j.beproc.2018.10.007.
  • Dugatkin LA, Godin JGJ. 1992. Prey approaching predators: A cost-benefit perspective. Annales Zoologici Fennici 29:233–252.
  • Eggers S, Griesser M, Nystrand M, Ekman J. 2006. Predation risk induces changes in nest-site selection and clutch size in the Siberian jay. Proceedings of the Royal Society B: Biological Sciences 273(1587):701–706. DOI: 10.1098/rspb.2005.3373.
  • Expósito-Granados M, Parejo D, Martínez JG, Precioso M, Molina-Morales M, Avilés JM, et al. 2017. Host nest site choice depends on risk of cuckoo parasitism in magpie hosts. Behavioral Ecology 28(6):1492–1497. DOI: 10.1093/beheco/arx113.
  • Fontaine JJ, Martin TE. 2006. Habitat selection responses of parents to offspring predation risk: An experimental test. The American Naturalist 168(6):811–818. DOI: 10.1086/508297.
  • Forsman JT, Martin TE. 2009. Habitat selection for parasite-free space by hosts of parasitic cowbirds. Oikos 118(3):464–470. DOI: 10.1111/j.1600-0706.2008.17000.x.
  • Forstmeier W, Weiss I. 2004. Adaptive plasticity in nest-site selection in response to changing predation risk. Oikos 104(3):487–499. DOI: 10.1111/j.0030-1299.1999.12698.x.
  • Fretwell SD, Lucas HL. 1969. On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19(1):16–36. DOI: 10.1007/BF01601953.
  • Godfrey JD. 2003. Potential use of energy expenditure of individual birds to assess quality of their habitats. Science Conservation 224:11–24.
  • Golawski A, Golawska S. 2008. Habitat preference in territories of the red-backed shrike Lanius collurio and their food richness in an extensive agriculture landscape. Acta Zoologica Academiae Scientiarum Hungaricae 54:89–97.
  • Golawski A, Golawska S. 2023. Delayed egg-laying in red-backed shrike lanius collurio in relation to increased rainfall in east-central Poland. International Journal of Biometeorology 67(4):717–724. DOI: 10.1007/s00484-023-02450-2.
  • Golawski A, Zduniak P. 2022. Influence of researcher experience and fieldwork intensity on the probability of brood losses in sensitive species: The case of the red-backed shrike lanius collurio. Journal for Nature Conservation 69:126249. DOI: 10.1016/j.jnc.2022.126249.
  • Hale K, Briskie J. 2007. Response of introduced European birds in New Zealand to experimental brood parasitism. Journal of Avian Biology 38(2):198–204. DOI: 10.1111/j.0908-8857.2007.03734.x.
  • Hollander FA, Van Dyck H, Martin GS, Titeux N, Crowther MS. 2015. Nest predation deviates from nest predator abundance in an ecologically trapped bird. Public Library of Science ONE 10(12):e0144098. DOI: 10.1371/journal.pone.0144098.
  • Hoover JP. 2003. Decision rules for site fidelity in a migratory bird, the prothonotary warbler. Ecology 84(2):416–430. DOI: 10.1890/0012-9658(2003)084[0416:DRFSFI]2.0.CO;2.
  • Hromada M, Antczak M, Valone TJ, Tryjanowski P, Adler FR. 2008. Settling decisions and heterospecific social information use in shrikes. Public Library of Science ONE 3(12):e3930. DOI: 10.1371/journal.pone.0003930.
  • Iglesias TL, Stetkevitch RC, Patricelli GL. 2014. Dead heterospecifics as cues of risk in the environment: Does size affect response? Behaviour 151(1):1–22. DOI: 10.1163/1568539X-00003120.
  • Johnson MD. 2007. Measuring habitat quality: A review. The Condor 109(3):489–504. DOI: 10.1093/condor/109.3.489.
  • Krüger O. 2007. Cuckoos, cowbirds and hosts: Adaptations, trade-offs and constraints. Philosophical Transactions of the Royal Society B: Biological Sciences 362(1486):1873–1886. DOI: 10.1098/rstb.2006.1849.
  • Larsen T. 2000. Influence of rodent density on nesting associations involving the Bar-tailed godwit limosa lapponica. Ibis 142(3):476–481. DOI: 10.1111/j.1474-919X.2000.tb04444.x.
  • Lenth R. 2020. Emmeans: Estimated marginal means, aka Least-Squares means. Available:https://cran.r-project.org/package=emmeans.
  • Lima SL. 2009. Predators and the breeding bird: Behavioral and reproductive flexibility under the risk of predation. Biological Reviews 84(3):485–513. DOI: 10.1111/j.1469-185X.2009.00085.x.
  • Lovászi P, Moskát C. 2004. Break-down of arms race between the red-backed shrike (lanius collurio) and common cuckoo (Cuculus canorus). Behaviour 141(2):245–262. DOI: 10.1163/156853904322890843.
  • Marton A, Fülöp A, Bán M, Hauber ME, Moskát C, Goymann W. 2021. Female common cuckoo calls dampen the mobbing intensity of great reed warbler hosts. Ethology 127(3):286–293. DOI: 10.1111/eth.13126.
  • Marzluff JM, Neatherlin E. 2006. Corvid response to human settlements and campgrounds: Causes, consequences, and challenges for conservation. Biological Conservation 130(2):301–314. DOI: 10.1016/j.biocon.2005.12.026.
  • Medina I, Langmore NE. 2019. Host density predicts the probability of parasitism by avian brood parasites. Philosophical Transactions of the Royal Society B: Biological Sciences 374(1769):20180204. DOI: 10.1098/rstb.2018.0204.
  • Møller AP. 1982. Characteristics of magpie Pica pica territories of varying duration. Ornis Scandinavica 13(2):94–100. DOI: 10.2307/3676195.
  • Møller AP, Díaz M, Liang W. 2016. Brood parasitism and proximity to human habitation. Behavioral Ecology 27(5):1314–1319. DOI: 10.1093/beheco/arw049.
  • Montgomerie RD, Weatherhead PJ. 1988. Risks and rewards of nest defence by parent birds. The Quarterly Review of Biology 63(2):167–187. DOI: 10.1086/415838.
  • Morosinotto C, Thomson RL, Korpimäki E. 2010. Habitat selection as an antipredator behaviour in a multi-predator landscape: All enemies are not equal. The Journal of Animal Ecology 79(2):327–333. DOI: 10.1111/j.1365-2656.2009.01638.x.
  • Moskát C. 2005. Common cuckoo parasitism in Europe: Behavioural adaptations, arms race and the role of metapopulations. Ornithological Science 4(1):3–15. DOI: 10.2326/osj.4.3.
  • Moskát C, Elek Z, Bán M, Geltsch N, Hauber ME. 2017. Can common cuckoos discriminate between neighbours and strangers by their calls? Animal Behaviour 126:253–260. DOI: 10.1016/j.anbehav.2017.02.013.
  • Moskat C, Fuisz T. 1999. Reactions of red-backed shrikes lanius collurio to artificial cuckoo Cuculus canorus eggs. Journal of Avian Biology 30(2):175–181. DOI: 10.2307/3677127.
  • Moskát C, Hauber ME. 2021. Male common cuckoos use a three-note variant of their “cu-coo” call for duetting with conspecific females. Behavioural Processes 191:104472. DOI: 10.1016/j.beproc.2021.104472.
  • Müller M, Pasinelli G, Schiegg K, Spaar R, Jenni L. 2005. Ecological and social effects on reproduction and local recruitment in the red-backed shrike. Oecologia 143(1):37–50. DOI: 10.1007/s00442-004-1770-5.
  • Němec M, Fuchs R. 2014. Nest defense of the red-backed shrike Lanius collurio against five corvid species. Acta ethologica 17(3):149–154. DOI: 10.1007/s10211-013-0175-z.
  • Němec M, Syrová M, Dokoupilová L, Veselý P, Šmilauer P, Landová E, Lišková S, Fuchs R, et al. 2015. Surface texture and priming play important roles in predator recognition by the red-backed shrike in field experiments. Animal Cognition 18(1):259–268. DOI: 10.1007/s10071-014-0796-2.
  • Piper WH, Walcott C, Mager JN, Spilker FJ. 2008. Nest site selection by male loons leads to sex-biased site familiarity. The Journal of Animal Ecology 77(2):205–210. DOI: 10.1111/j.1365-2656.2007.01334.x.
  • Polak M. 2013. Comparison of nest defence behaviour between two associate passerines. Journal of Ethology 31(1):1–7. DOI: 10.1007/s10164-012-0340-2.
  • R Development Core Team. 2018. R: A language and environment for statistical computing. Available:http://www.r-project.org/.
  • Roos S. 2006. Habitat selection and reproduction of red-backed shrikes (lanius collurio) in relation to abundance of potential avian nest predators. Osnabrücker Naturwissenschaftliche Mitteilungen 32:167–173.
  • Roos S, Pärt T. 2004. Nest predators affect spatial dynamics of breeding red-backed shrikes (lanius collurio). The Journal of Animal Ecology 73(1):117–127. DOI: 10.1111/j.1365-2656.2004.00786.x.
  • Sergio F, Newton I. 2003. Occupancy as a measure of territory quality. The Journal of Animal Ecology 72(5):857–865. DOI: 10.1046/j.1365-2656.2003.00758.x.
  • Söderström B. 2001. Seasonal change in Red‐backed shrike lanius collurio territory quality ‐ the role of nest predation. Ibis 143(3):561–571. DOI: 10.1111/j.1474-919X.2001.tb04883.x.
  • Specht R. 2016. Avisoft-SASLab pro version 5.2. Sound Analysis and Synthesis Laboratory for Microsoft Windows XP/Vista/7/8/8.1/10.
  • Strnad M, Němec M, Veselý P, Fuchs R. 2012. Red-backed shrikes (lanius collurio) adjust the mobbing intensity, but not mobbing frequency, by assessing the potential threat to themselves from different predators. Ornis Fennica 89(3):206–215. DOI: 10.51812/of.133807.
  • Tolvanen J, Forsman JT, Thomson RL. 2017. Reducing cuckoo parasitism risk via informed habitat choices. The Auk 134(3):553–563. DOI: 10.1642/AUK-17-30.1.
  • Trnka A, Peterková V, Grujbárová Z. 2011. Does Reed Bunting (emberiza schoeniclus) predict the risk of nest predation when choosing a breeding territory? An experimental study. Ornis Fennica 88(3):179–184. DOI: 10.51812/of.133781.
  • Tryjanowski P. 2003. Which method is most suitable for censusing breeding populations of red-backed (lanius collurio) and great grey (L. excubitor) shrikes? Ornis Hungarica 12–13:223–228.
  • Tryjanowski P, Golawski A, Janowski M, Sparks TH. 2021. Does experimentally simulated presence of a common cuckoo (Cuculus canorus) affect egg rejection and breeding success in the red-backed shrike (Lanius collurio)? Acta ethologica 24(2):87–94. DOI: 10.1007/s10211-021-00362-1.
  • Tryjanowski P, Kuzniak S. 1999. Effects of research activity on the success of red-backed shrike lanius collurio nests. Ornis Fennica 76:41–43.
  • Tryjanowski P, Kuźniak S, Sparks TH. 2005. What affects the magnitude of change in first arrival dates of migrant birds? Journal of Ornithology 146(3):200–205. DOI: 10.1007/s10336-005-0079-4.
  • Tryjanowski P, Morelli F. 2015. Presence of cuckoo reliably indicates high bird diversity: A case study in a farmland area. Ecological Indicators 55:52–58. DOI: 10.1016/j.ecolind.2015.03.012.
  • Tryjanowski P, Morelli F, Osiejuk TS, Møller AP. 2018. Functional significance of cuckoo Cuculus canorus calls: Responses of conspecifics, hosts and non-hosts. PeerJ 9:1–13. DOI: 10.7717/peerj.5302.
  • Wang J, Ma L, Chen X, Yang C. 2021. Behavioral and acoustic responses of the oriental reed warbler (acrocephalus orientalis), at egg and nestling stages, to the common cuckoo (Cuculus canorus). Frontiers in Ecology and Evolution 9:705748. DOI: 10.3389/fevo.2021.705748.
  • Xia C, Deng Z, Lloyd H, Møller AP, Zhao X, Zhang Y, et al. 2019. The function of three main call types in common cuckoo. Ethology 125(9):652–659. DOI: 10.1111/eth.12918.
  • York JE, Davies NB. 2017. Female cuckoo calls misdirect host defences towards the wrong enemy. Nature Ecology & Evolution 1(10):1520–1525. DOI: 10.1038/s41559-017-0279-3.