163
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Powering AI-driven car damage identification based on VeHIDE dataset

, , , , , & show all
Received 18 Jan 2024, Accepted 08 Jun 2024, Published online: 25 Jun 2024

References

  • Al-Shemarry, M. S., Li, Y., & Abdulla, S. (2020). An efficient texture descriptor for the detection of license plates from vehicle images in difficult conditions. IEEE Transactions on Intelligent Transportation Systems, 21(2), 553–564. https://doi.org/10.1109/TITS.6979
  • Balci, B., Artan, Y, & Elihos, A. (2019). Front-view vehicle damage detection using roadway surveillance camera images. Proceedings of the 5th International Conference on Vehicle Technology and Intelligent Transport Systems – Volume 1: Vehits (pp. 193–198), Crete, Greece, Scitepress.
  • Cheng, M. M., Gao, S. H., Borji, A., Tan, Y. Q., Lin, Z., & Wang, M. (2022). A highly efficient model to study the semantics of salient object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 8006–8021. https://doi.org/10.1109/TPAMI.2021.3107956
  • de Deijn, J (2018). Automatic car damage recognition using convolutional neural networks.
  • Deng, J., Dong, W., Socher, R., Li, L. J, Li, K, & Fei-Fei, L. (2009). ImageNet: a large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255), Miami, Florida, USA, IEEE.
  • Dhieb, N., Ghazzai, H., Besbes, H, & Massoud, Y. (2019). A very deep transfer learning model for vehicle damage detection and localization. In 2019 31st International Conference on Microelectronics (ICM) (pp. 158–161), Cairo, Egypt, IEEE.
  • Everingham, M., Gool, L. V., Williams, C., Winn, J., & Zisserman, A. (2010). The pascal visual object classes (VOC) challenge. International Journal of Vomputer Vision, 88(2), 303–338. https://doi.org/10.1007/s11263-009-0275-4
  • Fan, D. P., Gong, C., Cao, Y., Ren, B., Cheng, M. M., & Borji, A. (2018). Enhanced-alignment measure for binary foreground map evaluation. Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI 2018) (pp. 698–704), Stockholm, Sweden, ACM.
  • He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, Italy, IEEE.
  • Hoang, V. D., Vo, X. T., & Jo, K. H. (2023). Categorical weighting domination for imbalanced classification with skin cancer in intelligent healthcare systems. IEEE Access, 11, 105170–105181. https://doi.org/10.1109/ACCESS.2023.3319087
  • Huang, Y., Liu, Z., Jiang, M., Yu, X., & Ding, X. (2020). Cost-effective vehicle type recognition in surveillance images with deep active learning and web data. IEEE Transactions on Intelligent Transportation Systems, 21(1), 79–86. https://doi.org/10.1109/TITS.6979
  • Huynh, A. T., Hoang, V. D., Vu, S., Le, T. T., & Nguyen, H. D. (2022). Skin cancer classification using different backbones of convolutional neural networks. Proceeding of 35th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE 2022) (pp. 160–172), Kitakyushu, Japan, Springer.
  • Huynh, N. T., Tran, N., Huynh, A., Hoang, V. D., & Nguyen, H.D. (2023). VehiDE dataset: New dataset for automatic vehicle damage detection in car insurance. In Proceedings of 15th International Conference on Knowledge and Systems Engineering (KSE 2023) (pp. 322–327), Ha Noi, Vietnam, IEEE.
  • Jeon, H. J., Nguyen, V. D., Duong, T. T., & Jeon, J. W. (2022). A deep learning framework for robust and real-time taillight detection under various road conditions. IEEE Transactions on Intelligent Transportation Systems, 23(11), 20061–20072. https://doi.org/10.1109/TITS.2022.3178697
  • Jocher, G. (2020). Ultralytics YOLOv5 [Computer software manual]. https://github.com/ultralytics/yolov5.
  • Kingma, D. P., & Ba, J. (2015). Adam: A method for stochastic optimization. In The 3rd International Conference on Learning Representation (ICLR 2015), San Diego, CA, USA, ACM.
  • Li, P., Shen, B., & Dong, W. (2018). An anti-fraud system for car insurance claim based on visual evidence. Preprint arXiv:1804.11207.
  • Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., & C. L. Zitnick. (2014). Microsoft coco: Common objects in context. In Proceedings of 13th European Conference Computer Vision (ECCV), Part V 13 (pp. 740–755), Zurich, Switzerland, Springer.
  • Liu, J. J., Hou, Q., Cheng, M. M., Feng, J, & Jiang, J. (2019). A simple pooling-based design for real-time salient object detection. In Proceedings of The IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 3917–3926), Long Beach, CA, USA, IEEE.
  • Mahavir, D., Hashmat Shadab, M., Omkar, S. N., Monis, E. B., Khanna, B., S. R. Samal, Tiwari, A., & Rathi, A. (2021). Deep learning-based car damage classification and detection. In C. Niranjan F. Takanori (Eds.), Advances in artificial intelligence and data engineering (pp. 207–221). Springer Nature Singapore.
  • Margolin, R., Zelnik-Manor, L., & Tal, A. (2014). How to evaluate foreground maps? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 248-255), Columbus, OH, USA, IEEE.
  • Medrano-Berumen, C., & M. İlhan Akbaş (2021). Validation of decision-making in artificial intelligence-based autonomous vehicles. Journal of Information and Telecommunication, 5(1), 83–103. https://doi.org/10.1080/24751839.2020.1824154
  • Meißner, K., & Rieck, J. (2021). Multivariate forecasting of road accidents based on geographically separated data. Vietnam Journal of Computer Science, 8(3), 433–454. https://doi.org/10.1142/S2196888821500196
  • Nguyen, H., Tran, N., Nguyen, H. D., Nguyen, L., & Kotani, K. (2023a). KTFEv2: Multimodal facial emotion database and its analysis. IEEE Access, 11, 17811–17822. https://doi.org/10.1109/ACCESS.2023.3246047
  • Nguyen, H., Tran, V. P., Pham, V. T., & Nguyen, H. D. (2022). Designing a learning model for mobile vision to detect diabetic retinopathy based on the improvement of mobilenetv2. International Journal of Digital Enterprise Technology, 2(1), 38–53. https://doi.org/10.1504/IJDET.2022.124987
  • Nguyen, H. D., Truong, D., Vu, S., Nguyen, D., Nguyen, H., & Tran, N. (2023b). Knowledge management for information querying system in education via the combination of rela-ops model and knowledge graph. Journal of Cases on Information Technology (JCIT), 25(1), 1–17. https://doi.org/10.4018/JCIT
  • Parhizkar, M., & Amirfakhrian, M. (2022). Recognizing the damaged surface parts of cars in the real scene using a deep learning framework. Mathematical Problems in Engineering, 2022, 5004129. https://doi.org/10.1155/2022/5004129
  • Patel, N., Shinde, S. R., & Poly, F. (2020). Automated damage detection in operational vehicles using mask R-CNN. In Advanced computing technologies and applications (pp. 563–571). Springer.
  • Patil, K., Kulkarni, M., Sriraman, A., & Karande, S. S. (2017). Deep learning based car damage classification. Proceedings of 16th IEEE International Conference on Machine Learning and Applications (ICMLA 2017) (pp. 50–54), Cancun, Mexico, IEEE.
  • Pham, T. A., & Hoang, V. D. (2024). Chest X-ray image classification using transfer learning and hyperparameter customization for lung disease diagnosis. Journal of Information and Telecommunication, 1–15. https://doi.org/10.1080/24751839.2024.2317509.
  • Pham, V., Nguyen, H., Pham, B., Nguyen, T., & Nguyen, H. (2023). Robust engineering-based unified biomedical imaging framework for liver tumor segmentation. Current Medical Imaging, 19(1), 37–45. https://doi.org/10.2174/1573405617666210804151024
  • Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O. R., & Jagersand, M. (2020). U2-net: Going deeper with nested U-structure for salient object detection. Pattern Recognition, 106, 107404. https://doi.org/10.1016/j.patcog.2020.107404
  • Reddy, D. A., Shambharkar, S., Jyothsna, K., Kumar, V. M., Bhoyar, C. N., & Somkunwar, R. K. (2022). Automatic vehicle damage detection classification framework using fast and mask deep learning. Proceedings of 2nd International Conference on Computer Science, Engineering and Applications (ICCSEA) (pp. 1–6), Gunupur, India, IEEE.
  • Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, IEEE.
  • Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recognition. Proceedings of International Conference on Learning Representation (ICLR 2015), San Diego, USA.
  • Singh, R., Ayyar, M. P., Pavan, T. S., Gosain, S., & Shah, R. R. (2019). Automating car insurance claims using deep learning techniques. Proceedings of 2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM) (pp. 199–207), Singapore, IEEE.
  • Tran, N. N., Nguyen, H. D., Huynh, N. T., Tran, N. P., & Nguyen, L. V. (2022). Segmentation on chest CT imaging in COVID-19 based on the improvement attention U-Net model. In New trends in intelligent software methodologies, tools and techniques (pp. 596–606). IOS Press.
  • Wang, X., Li, W., & Wu, Z. (2022). Cardd: A new dataset for vision-based car damage detection. IEEE Transactions on Intelligent Transportation Systems, 24(7), 7202–7214. https://doi.org/10.1109/TITS.2023.3258480
  • Waqas, U. A., Akram, N., Kim, S. Y., Lee, D., & Jeon, J. Y. (2020). Vehicle damage classification and fraudulent image detection including moiré effect using deep learning. In 2020 . Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 1–5), Edmonton, AB, Canada, IEEE.
  • Xiang, Y., Fu, Y., & Huang, H. (2020). Global topology constraint network for fine-grained vehicle recognition. IEEE Transactions on Intelligent Transportation Systems, 21(7), 2918–2929. https://doi.org/10.1109/TITS.6979
  • Xiang, G., Yao, S., Deng, H., Wu, X., Wang, X., Xu, Q., Yu, T., Wang, K., & Peng, Y. (2024). A multi-modal driver emotion dataset and study: Including facial expressions and synchronized physiological signals. Engineering Applications of Artificial Intelligence, 130, 107772. https://doi.org/10.1016/j.engappai.2023.107772
  • Xu, B., Liang, H., Liang, R., & Chen, P. (2021). Locate globally, segment locally: A progressive architecture with knowledge review network for salient object detection. Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35 (pp. 3004–3012), Virtually.
  • Zhang, W., Cheng, Y., Guo, X., Guo, Q., Wang, J., Wang, Q., & Chu, W. (2020). Automatic car damage assessment system: Reading and understanding videos as professional insurance Inspectors. Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34, No. 9, pp. 13646–13647, New York, USA.
  • Zhang, L., Wang, P., Li, H., Li, Z., Shen, C., & Zhang, Y. (2021). A robust attentional framework for license plate recognition in the wild. IEEE Transactions on Intelligent Transportation Systems, 22(11), 6967–6976. https://doi.org/10.1109/TITS.2020.3000072
  • Zhang, X., Zhang, R., Cao, J., Gong, D., You, M., & Shen, C. (2022). Part-guided attention learning for vehicle instance retrieval. IEEE Transactions on Intelligent Transportation Systems, 23(4), 3048–3060. https://doi.org/10.1109/TITS.2020.3030301
  • Zhu, Q., Hu, W., Liu, Y., & Zhao, Z.. (2021). Research on vehicle appearance damage recognition based on deep learning. Proceedings of the 5th International Conference on Machine Vision and Information Technology (CMVIT 2021), Virtually, IOP Science.