689
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Computational modelling of particle-fluid dynamics in comminution and classification: a review

, ORCID Icon, & ORCID Icon
Pages 145-156 | Received 16 Sep 2019, Accepted 16 Dec 2019, Published online: 06 Jan 2020

References

  • Agrawala S, Rajamani RK, Songfack P, Mishra BK. 1997. Mechanics of media motion in tumbling mills with 3d discrete element method. Miner Eng. 10:215–227. doi: 10.1016/S0892-6875(96)00147-1
  • Aketi VAK, Teja Reddy V, Mangadoddy N, S GE, Raparla SK, Kumar R. 2018. Numerical simulation of near-gravity coal particle behavior in a dense medium cyclone using a mixture model coupled with a discrete phase model. Int J Coal Prep Util. 1–23. doi:10.1080/19392699.2018.1491844.
  • Alkec D. 2011. Modeling flow in pulp lifter channels of grinding mills with CFD. University of Utah.
  • ANSYS. 2011. Fluent 14 Theory Guide, USA.
  • Aurelien D, Eric C, Florent B, Kumar MA. 2012. Analysis of swirling flow in hydrocyclones operating under dense regime. Miner Eng. 31:32–41. doi: 10.1016/j.mineng.2012.01.012
  • Blazy P, Zarogatsky LP, Jdid EA, Hamdadou M. 1994. Vibroinertial comminution — principles and performance. Int J Miner Process. 41:33–51. doi: 10.1016/0301-7516(94)90004-3
  • Boysan F, Ewan BCR, Swithenbank J, Ayers WH. 1983. Experimental and theoretical studies of cyclone separator aerodynamics. Inst Chem Eng Symp Series. 305–319.
  • Bradley D. 1965. The hydrocyclone. London: Pergamon Press Ltd.
  • Brennan M. 2006. CFD simulations of hydrocyclones with an air core: comparison between large eddy simulations and a second moment closure. Chem Eng Res Des. 84(6 A):495–505. doi: 10.1205/cherd.05111
  • Brennan MS. 2003. Multiphase CFD simulations of dense medium and classifying hydrocyclones. Proceedings of the 3rd International Conference on CFD in the Minerals and Process Industries. CSIRO, Melbourne, Australia, pp. 59–63.
  • Chu KW, Chen J, Wang B, Yu AB, Vince A, Barnett GD, Barnett PJ. 2017. Understand solids loading effects in a dense medium cyclone: effect of particle size by a CFD-DEM method. Pow Tech. 320:594–609. doi: 10.1016/j.powtec.2017.07.032
  • Chu KW, Wang B, Yu AB, Vince A. 2009. CFD-DEM modelling of multiphase flow in dense medium cyclones. Pow Tech. 193:235–247. doi: 10.1016/j.powtec.2009.03.015
  • Chu KW, Wang B, Yu AB, Vince A. 2012. Computational study of multiphase flow in dense medium cyclones: effect of particle density. Chem Eng Sci. 73:123–139. doi: 10.1016/j.ces.2012.01.007
  • Cleary PW, Morrison RD. 2012. Prediction of 3D slurry flow within the grinding chamber and discharge from a pilot scale SAG mill. Miner Eng. 39:184–195. doi: 10.1016/j.mineng.2012.05.019
  • Cleary PW, Sinnott M, Rob Morrison B. 2006. Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media. Miner Eng. 19:1517–1527. doi: 10.1016/j.mineng.2006.08.018
  • Davidson MR. 1988. Numerical calculations of flow in a hydrocyclone operating without an air core. Appl Math Model. 12:119–128. doi: 10.1016/0307-904X(88)90003-0
  • Davidson MR. 1994. A Numerical Model of Liquid-Solid Flow in a Hydrocyclone with High Solids Fraction. International Symposium Numerical methods for Multiphase flows, Nevada.
  • Delgadillo JA, Rajamani RK. 2005. A comparative study of three turbulence-closure models for the hydrocyclone problem. Int J Miner Process. 77:217–230. doi: 10.1016/j.minpro.2005.06.007
  • Galvin KP, Smitham JB. 1994. Use of X-rays to determine the distribution of particles in an operating cyclone. Miner Eng. 7:1269–1280. doi: 10.1016/0892-6875(94)90117-1
  • Gao D, Herbst JA. 2009. Alternative ways of coupling particle behaviour with fluid dynamics in mineral processing. Int J Comput Fluid D. 23:109–118. doi: 10.1080/10618560902754932
  • Ghadirian M, Hayes RE, Mmbaga J, Afacan A, Xu Z. 2013. On the simulation of hydrocyclones using CFD. Can J Chem Eng. 91:950–958. doi: 10.1002/cjce.21705
  • Ghodrat M, Qi Z, Kuang SB, Ji L, Yu AB. 2016. Computational investigation of the effect of particle density on the multiphase flows and performance of hydrocyclone. Miner Eng. 90:55–69. doi: 10.1016/j.mineng.2016.03.017
  • Gourdel C, Simonin O, Brunier E. 1998. Modelling and simulation of gas-solid turbulent flows with a binary mixture of particles. Third International Conference on Multiphase Flow, Lyon, France.
  • Govender I, Mangesana N, Mainza AN, Franzidis JP. 2011. Measurement of shear rates in a laboratory tumbling mill. Miner Eng. 24:225–229. doi: 10.1016/j.mineng.2010.08.009
  • Gujjula R, Mangadoddy N. 2015. Hydrodynamic study of gas-solid internally circulating fluidized bed using multi-phase CFD model. Part Sci Technol. 33:593–609. doi: 10.1080/02726351.2015.1013590
  • Hsieh KT. 1988. Phenomenological model of the hydrocyclone. University of Utah.
  • Hsieh KT, Rajamani RK. 1988. Phenomenalogical model of hydrocyclone: model development and verification for single-phase flow. Int J Miner Process. 22:223–237. doi: 10.1016/0301-7516(88)90065-8
  • Hsieh KT, Rajamani RK. 1991. Mathematical model of the hydrocyclone based on the physics of fluid flow. AlChE J. 37(5):735–746. doi: 10.1002/aic.690370511
  • Ishii M, Mishima K. 1984. Two-fluid model and hydrodynamic constitutive relations. Nucl Eng Des. 82:107–126. doi: 10.1016/0029-5493(84)90207-3
  • Jayasundara CT, Yang RY, Guo BY, Yu AB, Govender I, Mainza A, Westhuizen AVD, Rubenstein J. 2011. CFD-DEM modelling of particle flow in IsaMills - comparison between simulations and PEPT measurements. Miner Eng. 24:181–187. doi: 10.1016/j.mineng.2010.07.011
  • Karimi M, Akdogan G, Bradshaw SM, Mainza A. 2012. Numerical modelling of air core in hydrocyclones. Ninth International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia.
  • Kelsall DF. 1952. A study of the motion of solid particles in a hydraulic cyclone. Trans Inst Chem Eng. 30:87–108.
  • Kuang SB, Chu KW, Yu AB, Vince A. 2012. Numerical study of liquid–gas–solid flow in classifying hydrocyclones effect of feed solids concentration: effect of feed solids concentration. Miner Eng. 31:17–31. doi: 10.1016/j.mineng.2012.01.003
  • Ma L, Ingham DB, Wen X. 2000. Numerical modelling of the fluid and particle penetration through small sampling cyclones. J Aerosol Sci. 31:23. doi: 10.1016/S0021-8502(00)00016-1
  • Manninen M, Taivassalo V, Kallio S. 1996. On the mixture model for multiphase flow. Finland: VTT Publications.
  • Mayank K, Malahe M, Govender I, Mangadoddy N. 2015. Coupled DEM-CFD model to predict the tumbling mill dynamics. Procedia IUTAM. 15:139–149. doi: 10.1016/j.piutam.2015.04.020
  • Mayank K, Narasimha M, Govender I. 2015. Two way coupled CFD-DEM model to predict tumbling mill dynamics. SAG Conference, Vancouer, Canada.
  • Mishra BK, Rajamani RK. 1992. The discrete element method for the simulation of ball mills. Appl Math Model. 16:598–604. doi: 10.1016/0307-904X(92)90035-2
  • Monredon TC, Hsieh KT, Rajamani RK. 1992. Fluid flow model of the hydrocyclones: an investigation of device dimensions. Int J Miner Process. 35:65–83. doi: 10.1016/0301-7516(92)90005-H
  • Mousavian SM, Najafi AF. 2009. Numerical simulations of gas–liquid–solid flows in a hydrocyclone separator. Arch Appl Mech. 79:395–409. doi: 10.1007/s00419-008-0237-2
  • Nageswararao K. 1978. Further modelling and scale-up of hydrocyclones. JKMRC, University of Queensland.
  • Napier-Munn T. 2018. The dense medium cyclone – past, present and future. Miner Eng. 116:107–113. doi: 10.1016/j.mineng.2017.10.002
  • Narasimha M, Brennan M, Holtham PN. 2006. Large eddy simulation of hydrocyclone—prediction of air-core diameter and shape. Int J Miner Process. 80:1–15. doi: 10.1016/j.minpro.2006.01.003
  • Narasimha M, Brennan MS, Holtham PN. 2006. Numerical simulation of magnetite segregation in a dense medium cyclone. Miner Eng. 19:1034–1047. doi: 10.1016/j.mineng.2006.03.013
  • Narasimha M, Brennan MS, Holtham PN. 2012. CFD modeling of hydrocyclones: prediction of particle size segregation. Miner Eng. 39:173–183. doi: 10.1016/j.mineng.2012.05.010
  • Narasimha M, Brennan MS, Holtham PN, Napier-Munn TJ. 2007. A comprehensive CFD model of dense medium cyclone performance. Miner Eng. 20:414–426. doi: 10.1016/j.mineng.2006.10.004
  • Narasimha M, Mainza AN, Holtham PN, Brennan MS. 2012. Air-core modelling for hydrocyclones operating with solids. Int J Miner Process. 102–103: 19–24. doi: 10.1016/j.minpro.2011.09.004
  • Narasimha M, Mainza AN, Holtham PN, Powell MS, Brennan M. 2014. A semi-mechanistic model of hydrocyclones – developed from industrial data and inputs from CFD. Int J Miner Process. 133:1–12. doi: 10.1016/j.minpro.2014.08.006
  • Passalacqua A, Marmo L. 2009. A critical comparison of frictional stress models applied to the simulation of bubbling fluidized beds. Chem Eng Sci. 64:2795–2806. doi: 10.1016/j.ces.2009.03.005
  • Patankar NA, Joseph DD. 2001. Modeling and numerical simulation of particulate flows by the Eulerian–lagrangian approach. Int J Multiphase Flow. 27:1659–1684. doi: 10.1016/S0301-9322(01)00021-0
  • Pericleous KA, Rhodes N. 1986. The hydrocyclone classifier-a numerical approach. Int J Miner Process. 17(23):43.
  • Petty CA, Parks SM. 2001. Flow predictions within hydrocyclones. Filtr Sep. 38:28–34. doi: 10.1016/S0015-1882(01)80379-7
  • Popoff B, Braun MA. 2007. Lagrangian approach to dense particulate flows. 6th International Conference on Multiphase Flow, Leipzig, Germany.
  • Qi Z, Kuang SB, Yu AB. 2015. Numerical investigation of the separation behaviours of fine particles in large dense medium cyclones. Int J Miner Process. 142:35–45. doi: 10.1016/j.minpro.2015.05.006
  • Rajamani RK, Songfack P, Mishra BK. 2000. Impact energy spectra of tumbling mills. Pow Tech. 108:116–121. doi: 10.1016/S0032-5910(99)00208-9
  • Rao TC. 1966. The characteristics of hydrocyclones and their application as control units in comminution circuits. Univeristy of Queensland.
  • Raziyeh S, Ataallah GS. 2014. CFD simulation of an industrial hydrocyclone with Eulerian–Eulerian approach: A case study. Int J Mining Eng. 24:643–648.
  • Razmi H, Soltani Goharrizi A, Mohebbi A. 2019. CFD simulation of an industrial hydrocyclone based on multiphase particle in cell (MPPIC) method. Sep Purif Technol. 209:851–862. doi: 10.1016/j.seppur.2018.06.073
  • Renner VG. 1976. The action of the hydrocyclone. The University of London, UK.
  • Schoenert K. 1986. Limits of energy saving in mills. 1st World Congress on Particle Technology, Nurnberg. p. 1–21.
  • Sevilla EM, Branion R. 1997. The fluid dynamics of hydrocyclones. J Pulp Pap Sci. 23:85–93.
  • Shi FN, Napier-Munn TJ. 1996. A model for slurry rheology. Int J Miner Process. 47:103–123. doi: 10.1016/0301-7516(95)00101-8
  • Slechta J, Firth BA. 1984. Classification of fine coal with a hydrocyclone. Int J Miner Process. 12:213–237. doi: 10.1016/0301-7516(84)90030-9
  • Stephens DW, Mohanarangam K. 2009. Turbulence model analysis of flow inside a hydrocyclone. Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia.
  • Subramanian VJ. 2002. Measurement of Medium Segregation in the Dense Medium Cyclone using Gamma-Ray Tomography. JKMRC, University of Queensland.
  • Syamlal M, Rogers W, O'Brien TJ. 1993. MFIX documentation: theory guide. Technical Report DOE/METC-94/1004 (DE9400087). Morgantown Energy Technology Centre, Morgantown, West Virginia.
  • Tavares LM. 2017. A review of advanced ball mill modelling. KONA Powder Part J. 34:106–124. doi: 10.14356/kona.2017015
  • Teja Reddy V, Venkata Kowshik A, Narasimha M. 2015. Dense slurry CFD model for hydrocyclone performance evaluation incorporating rheology, particle drag and lift forces. Seventh International Conference on CFD in the Minerals and Process Industries, Melbourne, Australia.
  • Vakamalla TR, Mangadoddy N. 2015. Rheology-based CFD modeling of magnetite medium segregation in a dense medium cyclone. Pow Tech. 277:275–286. doi: 10.1016/j.powtec.2015.02.025
  • Vakamalla TR, Mangadoddy N. 2017. Numerical simulation of industrial hydrocyclones performance: role of turbulence modelling. Sep Purif Technol. 176:23–39. doi: 10.1016/j.seppur.2016.11.049
  • Vakamalla TR, Mangadoddy N. 2019. The dynamic behaviour of a large-scale 250-mm hydrocyclone: A CFD study. Asia-Pac J Chem Eng. 14(2):e2287. doi: 10.1002/apj.2287
  • Wang B, Chu KW, Yu AB, Vince A. 2009. Modeling the multiphase flow in a dense medium cyclone. Ind Eng Chem Res. 48:3628–3639. doi: 10.1021/ie801175c
  • Weerasekara NS, Powell MS, Cleary PW, Tavares LM, Evertsson M, Morrison RD, Quist J, Carvalho RM. 2013. The contribution of DEM to the science of comminution. Pow Tech. 248:3–24. doi: 10.1016/j.powtec.2013.05.032
  • Wood CJ. 1990. A Performance Model for Coal-Washing Dense Medium Cyclones. University of Queensland, Australia.
  • Zhang Y, Cai P, Jiang F, Dong K, Jiang Y, Wang B. 2017. Understanding the separation of particles in a hydrocyclone by force analysis. Pow Tech. 322:471–489. doi: 10.1016/j.powtec.2017.09.031
  • Zhou Q, Wang C, Wang H, Wang J. 2016. Eulerian–lagrangian study of dense liquid–solid flow in an industrial-scale cylindrical hydrocyclone. Int J Miner Process. 151:40–50. doi: 10.1016/j.minpro.2016.04.005
  • Zhu HP, Zhou ZY, Yang RY, Yu AB. 2007. Discrete particle simulation of particulate systems: Theoretical developments. Chem Eng Sci. 62:3378–3396. doi: 10.1016/j.ces.2006.12.089

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.