730
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Modelling of non-metallic inclusions in steel

, , , , , , & show all
Pages 184-206 | Received 30 Nov 2019, Accepted 01 Mar 2020, Published online: 16 Mar 2020

References

  • Chen W, Li W, Zhang L. 2019. Study on instantaneous transport phenomena along the full continuous casting slab strand. AISTech 2019 iron and steel technology conference and exposition;; May 6, 2019–May 9, 201; Pittsburgh, PA, United states: Association for Iron and Steel Technology, AISTECH: 2019-May. p. 1345–1361.
  • Chen W, Ren Y, Zhang L, Scheller PR. 2019. Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES + VOF + DPM model. JOM. 71(3):1158–1168. doi: 10.1007/s11837-018-3255-8
  • Chen W, Ren Y, Zhang L. 2018. Large eddy simulation on the fluid flow, solidification and entrapment of inclusions in the steel along the full continuous casting slab strand. JOM. 70(12):2968–2979. doi: 10.1007/s11837-018-3118-3
  • Chen W, Ren Y, Zhang L. 2019. Large eddy simulation on the two-phase flow in a water model of continuous casting strand with gas injection. Steel Res Int. 90(4):180027/1–12. doi: 10.1002/srin.201800287
  • Cheng G, Li W, Zhang X, Zhang L. 2019. Transformation of inclusions in solid GCr15 bearing steels during heat treatment. Metals (Basel). 9(6):642. doi: 10.3390/met9060642
  • Christenson HK, Claesson PM. 1988. Cavitation and the interaction between macroscopic Hydrophobic surfaces. Science. 239(4838):390–392. doi: 10.1126/science.239.4838.390
  • Chu Y, Chen Z, Liu N, Zhang L. 2018. Evolution of non-metallic inclusions during the production of U75 V heavy rail steel. China Metall (Chinese). 28(S1):83–89.
  • Duan H, Ren Y, Thomas BG, Zhang L. 2019. Agglomeration of solid inclusions in molten steel. Metall Mater Trans B. 50(1):36–41. doi: 10.1007/s11663-018-1478-2
  • Duan H, Ren Y, Zhang L. 2018. Effects of interphase forces on fluid flow in gas-stirred steel ladles using the Eulerian–lagrangian multiphase approach. JOM. 70(10):2128–2138. doi: 10.1007/s11837-018-3045-3
  • Duan H, Ren Y, Zhang L. 2019a. Fluid flow, thermal stratification, and inclusion motion during holding period in steel ladles. Metall Mater Trans B. 50(3):1476–1489. doi: 10.1007/s11663-019-01535-x
  • Duan H, Ren Y, Zhang L. 2019b. Inclusion capture probability prediction model for bubble floatation in turbulent steel flow. Metall Mater Trans B. 50(1):16–21. doi: 10.1007/s11663-018-1462-x
  • Duan H, Ren Y, Zhang L. 2019c. Initial agglomeration of non-wetted solid particles in high temperature melt. Chem Eng Sci. 196(1):14–24. doi: 10.1016/j.ces.2018.12.008
  • Duan H, Zhang L, Thomas BG, Conejo AN. 2018. Fluid flow, dissolution, and mixing phenomena in argon-stirred steel ladles. Metall Mater Trans B. 49(5):2722–2743. doi: 10.1007/s11663-018-1350-4
  • Duan H, Zhang L, Thomas BG. 2019. Effect of melt superheat and alloy size on the mixing phenomena in argon-stirred steel Ladles. Steel Res Int. 90(4):1800288/1–8. doi: 10.1002/srin.201800288
  • Guo C, Ling H, Zhang L, Yang W, Ren Y, Zhou H. 2017. Effect of slag basicity adjusting on inclusions in tire cord steels during ladle furnace refining process. Metall Res Technol. 114(6):602/1–602-7. doi: 10.1051/metal/2017065
  • Jiang D, Zhu M, Zhang L. 2019. Numerical simulation of solidification behavior and solute transport in slab continuous casting with S-EMS. Metals (Basel). 9(4):452/1–452/15. doi: 10.3390/met9040452
  • Kawawa T, Ohkubo M. 1968. A kinetics on deoxidation of steel. Trans ISIJ. 8:203–219.
  • Li M, Liu Y, Zhang L. 2018. Effect of Reoxidation on inclusions in steel during calcium treatment. Metall Res Technol. 116(2):206/1–206/9.
  • Li S, Ren Y, Zhang L, Yang W. 2014. Study on CaO and CaS inclusions in pipeline steel during refining process. J Univ Sci Technol Beijing. 36:168–172.
  • Li S, Zhang L, Ren Y, Fang W, Yang W, Shao S, Yang J, Mao W. 2016. Transient behavior of inclusions during reoxidation of Si-deoxidized stainless steels in tundish. ISIJ Int. 56(4):584–593. doi: 10.2355/isijinternational.ISIJINT-2015-694
  • Li S, Zuo X, Peng K, Wang Y, Zhang L. 2009. Investigation on ladle nozzle clogging during steel pouring process. Proccedings of AISTech 2009 iron & steel technology conference and exposition; Vol. II, AIST; Warrandale, PA: St. Louis. p. 589–601.
  • Ling H, Guo C, Conejo AN, Li F, Zhang L. 2017. Effect of Snorkel shape and number of nozzles on mixing phenomena in the RH process by physical modeling. Metall Res Technol. 113(1):111/1–111/13.
  • Ling H, Li F, Zhang L, Conejo AN. 2016. Investigation on the effect of nozzle number on the recirculation rate and mixing time in the RH process using VOF + DPM model. Metall Mater Trans B. 47B(3):1950–1961. doi: 10.1007/s11663-016-0669-y
  • Ling H, Zhang L. 2013. Numerical simulation of the growth and removal of inclusions in the molten steel of a two-strand tundish. JOM. 65(9):1155–1163. doi: 10.1007/s11837-013-0689-x
  • Ling H, Zhang L. 2018a. A mathematical model for prediction of carbon concentration during RH refining process. Metall Mater Trans B. 49B(6):2963–2968. doi: 10.1007/s11663-018-1403-8
  • Ling H, Zhang L. 2018b. Investigation on the fluid flow and decarburization process in the RH process. Metall Mater Trans B. 49B(5):2709–2721. doi: 10.1007/s11663-018-1319-3
  • Ling H, Zhang L. 2019. Numerical simulation of gas and liquid two-phase flow in the RH process. Metall Mater Trans B. 50B(4):2017–2028. doi: 10.1007/s11663-019-01583-3
  • Ling H, Zhang L, Li H. 2016. Mathematical modeling on the growth and removal of non-metallic inclusions in the molten steel in a two-strand continuous casting tundish. Metall Mater Trans B. 47(5):2991–3012. doi: 10.1007/s11663-016-0743-5
  • Ling H, Zhang L, Liu C. 2017. Mathematical modeling on the fluid flow during RH degassing process. Metall Res Technol. 114(5):510/1–510/12.
  • Ling H, Zhang LF, Liu C. 2018. Effect of Snorkel shape on the fluid flow during RH degassing process: mathematical modelling. Ironmak Steelmak. 45(2):145–156. doi: 10.1080/03019233.2016.1248700
  • Ling H, Zhang L, Wang H. 2017. Effect of different removal conditions on the growth and removal of inclusions in the molten steel in a two-strand tundish. Metall Res Technol. 114(5):516/1–516/8.
  • Liu C, Duan H, Zhang L. 2019. Modeling of the melting of aluminum particles during the RH refining process. Metals (Basel). 9(4):442/1–442/13.
  • Liu Y, Zhang L. 2018. Relationship between dissolved calcium and total calcium in Al-killed steels after calcium treatment. Metall Mater Trans B. 49(4):1624–1631. doi: 10.1007/s11663-018-1288-6
  • Liu Y, Zhang L, Zhang Y, Duan H, Ren Y, Yang W. 2018. Effect of sulfur in steel on transient evolution of inclusions during calcium treatment. Metall Mater Trans B. 49(2):610–626. doi: 10.1007/s11663-018-1179-x
  • Liu Y, Zhang Y, Zhang L, Ren Y, Shen P, Luo Y. 2018. Formation mechanism of complex oxide inclusions in 55SiCr spring steels. Steel Res Int. 89(2):1700277/1–11. doi: 10.1002/srin.201700277
  • Long M, Zhang L, Zuo X, Chen D. 2010. Kinetic modeling on nozzle clogging during steel billet continuous casting. ISIJ Int. 50(5):712–720. doi: 10.2355/isijinternational.50.712
  • Lou W, Zhu M. 2013. Numerical simulation of gas and liquid Two-phase flow in Gas-stirred systems based on euler–euler approach. Metall Mater Trans B. 44(5):1251–1263. doi: 10.1007/s11663-013-9897-6
  • Luo Y, Conejo AN, Zhang L, Chen L, Cheng L. 2015. Effect of superheat, cooling rate, and refractory composition on the formation of non-metallic inclusions in non-oriented electrical steels. Metall Mater Trans B. 46B(5):2348–2360. doi: 10.1007/s11663-015-0401-3
  • Luo Y, Li M, Scheller PR, Sridhar S, Zhang L. 2019. Interaction between liquid steel and AlN substrate containing Al-Y-oxides. Metall Mater Trans B. 50(5):2459–2470. doi: 10.1007/s11663-019-01636-7
  • Luo Y, Liu C, Ren Y, Zhang L. 2018. Modeling on the fluid flow and mixing phenomena in a RH steel degasser with oval down-leg Snorkel. Steel Res Int. 89(12):1800048/1–13. doi: 10.1002/srin.201800048
  • Luo Y, Yang W, Ren Q, Hu Z, Li M, Zhang L. 2018. Evolution of non-metallic inclusions and precipitates in oriented silicon steel. Metall Mater Trans B. 49B(3):926–932. doi: 10.1007/s11663-018-1252-5
  • Luo Y, Zhang L, Li M, Sridhar S. 2018. A thermodynamic model to estimate the formation of complex Nitrides of Al x Mg (1–x) N in silicon steel. Metall Mater Trans B. 49B(3):894–901. doi: 10.1007/s11663-018-1219-6
  • Luo Y, Zhang L, Yang W, Ren Y, Conejo AN. 2019. Precipitation of nitrides in non-oriented silicon steel. Ironmak Steelmak. 46(4):359–367. doi: 10.1080/03019233.2017.1397939
  • Nogi K, Ogino K. 1983. Role of interfacial phenomena in deoxidation process of molten iron. Can Metall Q. 22(1):19–28. doi: 10.1179/cmq.1983.22.1.19
  • Ogino K, Adachi A, Nogi K. 1973. Wettability of solid oxides by liquid iron. Tetsu-To-Hagane. 59(9):1237–1244.
  • Pashley RM, McGuiggan PM, Ninham BW, Fennell Evans D. 1985. Attractive forces between uncharged hydrophobic surfaces: direct measurements in aqueous solution. Science. 229(4718):1088–1089. doi: 10.1126/science.4035349
  • Ren Y, Pistorius C, Zhang L. 2017. Transformation of oxide inclusions in type 304 stainless steel during heat treatment. Metall Mater Trans B. 48B(5):2281–2292. doi: 10.1007/s11663-017-1007-8
  • Ren L, Ren Y, Zhang L, Yang J. 2019. Investigation on fluid flow inside a continuous slab casting mold using particle image velocimetry. Steel Res Int. 90(11):1–11. doi: 10.1002/srin.201900209
  • Ren Y, Wang Y, Li S, Zhang L, Zuo X, Lekakh SN, Peaslee KD. 2014. Detection of Non-metallic inclusions in steel continuous casting billets. Metall Mater Trans B. 45B(4):1291–1303. doi: 10.1007/s11663-014-0042-y
  • Ren Y, Zhang L. 2018. Modeling inclusion evolution in Al-Ti-killed steels during ladle mixing process. Ironmaking Steelmaking. 45(7):585–591. doi: 10.1080/03019233.2017.1303933
  • Ren Y, Zhang L, Ling H, Wang Y, Pan D, Ren Q, Wang X. 2017. A reaction model for prediction of inclusion evolution during reoxidation of Ca-treated Al-killed steels in tundish. Metall Mater Trans B. 48B(3):1433–1438. doi: 10.1007/s11663-017-0970-4
  • Ren L, Zhang L, Wang Q. 2018. Measurements of surface velocity and level fluctuation in an actual continuous wide slab casting mold. Metall Res Technol. 115(1):102/1–102/13. doi: 10.1051/metal/2017074
  • Rocabois P, Pontoire J-N, Delville V, Marolleau I. 2003. Different slivers type observed in Solla steel plants and improved practice to reduce surface defects on cold Roll Sheet. In ISSTech2003 conference proceedings; ISS, Warrandale, PA. p. 995–1006.
  • Schulze HJ. 1989. Hydrodynamics of bubble-mineral particle collisions. Miner Process Extr Metall Rev. 5:43–76. doi: 10.1080/08827508908952644
  • Wang Y, Dong A, Zhang L. 2011. Effect of slide gate and EMBr on the transport of inclusions and bubbles in slab continuous casting strands. Steel Res Int. 82(4):428–439. doi: 10.1002/srin.201000192
  • Wang Q, Li S, Li Y, Zhang L, Wang X. 2013. Modeling on fluid flow and inclusion motion in a continuous casting FC-mold. Proceedings of EPD congress, TMS 2013 annual meeting & exhibition. p. 135–142.
  • Wang J, Li W, Ren Y, Zhang L. 2019. Thermodynamic and kinetic analysis for transformation of oxide inclusions in solid 304 stainless steels. Steel Res Int. 90(7):201800600/1–10.
  • Wang J, Ren Q, Luo Y, Zhang L. 2018. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels. J Magn Magn Mater. 451:454–462. doi: 10.1016/j.jmmm.2017.11.072
  • Wang Y, Yang W, Zhang L. 2019. Effect of cooling rate on oxide inclusions during solidification of 304 stainless steel. Steel Res Int. 90(7):1900027/1–10.
  • Wang Q, Zhang L, Sridhar S, Yang S, Yang W, Wang Y. 2016. Detection of non-metallic inclusions in centrifugal continuous casting steel billets. Metall Mater Trans B. 47B. doi: 10.1007/s11663-016-0625-x
  • Wang S, Zhang L, Wang Q, Yang W, Wang Y, Ren L, Cheng L. 2016. Effect of electromagnetic parameters on the motion and entrapment of inclusions in FC-mold continuous casting strands. Metall Res Technol. 113(2):205/1–205/16. doi: 10.1051/metal/2016003
  • Wang S, Zhang X, Zhang L, Wang Q. 2018. Influence of electromagnetic brake on hook growth and inclusion entrapment beneath the surface of low-carbon continuous casting slabs. Steel Res Int. 89(12):1800263/1–8. doi: 10.1002/srin.201800263
  • Yaminsky VV, Yushchenko VS, Amelina EA, Shchukin ED. 1983. Cavity formation due to a contact between particles in a nonwetting liquid. J Colloid Interface Sci. 96(2):301–306. doi: 10.1016/0021-9797(83)90034-6
  • Yang W, Guo C, Li C, Zhang L. 2017. Transformation of inclusions in pipeline steels during solidification and cooling. Metall Mater Trans B. 48B(5):2267–2273. doi: 10.1007/s11663-017-1012-y
  • Yang W, Zhang L, Wang X, Ren Y, Liu X, Shan Q. 2013. Characteristics of inclusions in low carbon Al-killed steel during ladle furnace refining and calcium treatment. ISIJ Int. 53(8):1401–1410. doi: 10.2355/isijinternational.53.1401
  • Yang W, Zhang Y, Zhang L, Duan H, Wang L. 2015. Population evolution of oxide inclusions in Ti-stabilized ultra-low carbon steels after deoxidation. J Iron Steel Res Int. 22(12):1069–1077. doi: 10.1016/S1006-706X(15)30114-X
  • Ye Y, Miller JD. 1989. The significance of bubble/particle contact time during collision in the analysis of flotation phenomena. Int J Miner Process. 25(3):199–219. doi: 10.1016/0301-7516(89)90018-5
  • Yushchenko VS, Yaminsky VV, Shchukin ED. 1983. Interaction between particles in a nonwetting liquid. J Colloid Interface Sci. 96(2):307–314. doi: 10.1016/0021-9797(83)90035-8
  • Zhang L. 2005. Fluid flow, heat transfer and inclusion motion in a four-strand billet continuous casting tundish. Steel Res Int. 76(11):784–796. doi: 10.1002/srin.200506097
  • Zhang L. 2010. Transient fluid flow phenomena in continuous casting Tundishes. Iron Steel Technol. 7(7):55–69.
  • Zhang L. 2013. Nucleation, growth, transport, and entrapment of inclusions during steel casting. JOM. 65(9):1138–1144. doi: 10.1007/s11837-013-0688-y
  • Zhang L. 2019a. Atlas of non-metallic inclusions in steels (I). Beijing: Metallurgical Industry Press.
  • Zhang L. 2019b. Atlas of non-metallic inclusions in steels (II). Beijing: Metallurgical Industry Press.
  • Zhang L. 2019c. Non-metallic inclusions in steels: fundamentals (in Chinese). Beijing: Metallurgical Industry Press.
  • Zhang L. 2020. Non-metallic inclusions in steels: industrial Practice (in Chinese). Beijing: Metallurgical Industry Press.
  • Zhang L, Aoki J, Thomas BG. 2006. Inclusion removal by bubble flotation in a continuous casting mold. Metall Mater Trans B. 37B(3):361–379. doi: 10.1007/s11663-006-0021-z
  • Zhang X, Chen W, Ren Y, Zhang L. 2019. Mathematical modeling on the influence of casting Parameters on initial solidification at the meniscus of slab continuous casting. Metall Mater Trans B. 50B(3):1444–1460. doi: 10.1007/s11663-019-01570-8
  • Zhang X, Chen W, Scheller PR, Ren Y, Zhang L. 2019. Mathematical modeling of initial solidification and slag Infiltration at the meniscus of slab continuous casting mold. JOM. 71(1):78–87. doi: 10.1007/s11837-018-3177-5
  • Zhang L, Guo C, Yang W, Ren Y, Ling H. 2018. Deformability of oxide inclusions in tire cord steels. Metall Mater Trans B. 49B(2):803–811. doi: 10.1007/s11663-017-1134-2
  • Zhang L, Li F. 2014. Investigation on the fluid flow and mixing phenomena in a Ruhrstahl-Heraeus (RH) steel degasser using Physical modeling. JOM. 66(7):1227–1240. doi: 10.1007/s11837-014-1023-y
  • Zhang L, Liu Y, Zhang Y, Yang W, Chen W. 2018. Transient evolution of non-metallic inclusions during calcium treatment of molten steel. Metall Mater Trans B. 49B(4):1841–1859. doi: 10.1007/s11663-018-1289-5
  • Zhang L, Pluschkell W. 2003. Nucleation and growth kinetics of inclusions during liquid steel deoxidation. Ironmak Steelmak. 30(2):106–110. doi: 10.1179/030192303225001766
  • Zhang X, Ren Y, Zhang L. 2018. Influence of casting parameters on hooks and entrapped inclusions at the subsurface of continuous casting slabs. Metall Mater Trans A. 49(11):5469–5477. doi: 10.1007/s11661-018-4860-4
  • Zhang Y, Ren Y, Zhang L. 2017. Modeling transient evolution of inclusion in Si-Mn-killed steels during the ladle mixing process. Metall Res Technol. 114:308/1–8.
  • Zhang Y, Ren Y, Zhang L. 2018. Kinetic study on compositional variations of inclusions, steel and slag during refining process. Metall Res Technol. 115(4):415/1–415/8.
  • Zhang X, Ren Y, Zhang L, Yang W. 2018. Entrapment of inclusions by solidified hooks at the subsurface of ultra-low-carbon steel slab. Metall Mater Trans B. 49(6):3186–3199. doi: 10.1007/s11663-018-1366-9
  • Zhang L, Taniguchi S. 2000. Fundamentals of inclusion removal from liquid steel by bubble flotation. Int Mater Rev. 45(2):59–82. doi: 10.1179/095066000101528313
  • Zhang L, Taniguchi S, Cai K. 2000. Fluid flow and inclusion removal in continuous casting tundish. Metall Mater Trans B. 31B(2):253–266. doi: 10.1007/s11663-000-0044-9
  • Zhang L, Thomas BG. 2003. State of the art in evaluation and control of steel cleanliness. ISIJ Inter. 43(3):271–291. doi: 10.2355/isijinternational.43.271
  • Zhang L, Wang Y. 2012. Modeling on the entrapment of non-metallic inclusions in steel continuous casting billets. JOM. 64(9):1063–1074. doi: 10.1007/s11837-012-0421-2
  • Zhang X, Wang Q, Yang W, Wang S, Zhang L. 2018. Three-dimensional distribution of hooks in Al-killed low-carbon continuous casting steel slabs. Metall Mater Trans B. 49(5):2533–2549. doi: 10.1007/s11663-018-1339-z
  • Zhang L, Wang Y, Zuo X. 2008. Flow transport and inclusion motion in steel continuous-casting mold under submerged entry nozzle clogging condition. Metall Mater Trans B. 39B(4):534–550. doi: 10.1007/s11663-008-9154-6
  • Zhang X, Yang W, Xu H, Zhang L. 2019. Effect of cooling rate on the formation of nonmetallic inclusions in X80 pipeline steel. Metals (Basel). 9(4):392/1–392/13.
  • Zhang L, Zhang X, Ren Y, Yang W. 2019. Influence of water flow rate in mold on hooks and inclusions at the subsurface of ultra low carbon Al-killed continuous casting slabs. Metall Res Technol. 116(2):151–156. doi: 10.1051/metal/2018065

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.