296
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Evaluation of machine learning applications using real-world EHR data for predicting diabetes-related long-term complications

ORCID Icon, , , , &
Pages 141-151 | Received 01 Jul 2021, Accepted 06 Sep 2021, Published online: 21 Sep 2021

References

  • Ajmera, I., Swat, M., Laibe, C., Novére, N. L., & Chelliah, V. (2013). The impact of mathematical modeling on the understanding of diabetes and related complications. CPT: Pharmacometrics and Systems Pharmacology, 2(7), e54. https://doi.org/10.1038/psp.2013.30
  • Cheng, P., Waitman, L. R., Hu, Y., & Liu, M. (2017). Predicting inpatient acute kidney injury over different time horizons: How early and accurate? AMIA … Annual Symposium Proceedings. AMIA Symposium, 2017 (pp. 565–574).
  • Clinical Classifications Software (CCS) for ICD-9-CM. (2017). Healthcare cost and utilization project (HCUP). Agency for Healthcare Research and Quality. https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp
  • Contreras, I., & Vehi, J. (2018). Artificial intelligence for diabetes management and decision support: Literature review. Journal of Medical Internet Research, 20(5), e10775. https://doi.org/10.2196/10775
  • Dagliati, A., Marini, S., Sacchi, L., Cogni, G., Teliti, M., Tibollo, V., … & Bellazzi, R. (2018). Machine learning methods to predict diabetes complications. Journal of Diabetes Science and Technology, 12(2), 295–302. https://doi.org/10.1177/1932296817706375
  • Deshpande, A. D., Harris-Hayes, M., & Schootman, M. (2008). Epidemiology of diabetes and diabetes-related complications. Physical Therapy, 88(11), 1254–1264. https://doi.org/10.2522/ptj.20080020
  • Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
  • Girach, A., Manner, D., & Porta, M. (2006). Diabetic microvascular complications: Can patients at risk be identified? A review. International Journal of Clinical Practice, 60(11), 1471–1483. https://doi.org/10.1111/j.1742-1241.2006.01175.x
  • Glynn, E. F., & Hoffman, M. A. (2019). Heterogeneity introduced by EHR system implementation in a de-identified data resource from 100 non-affiliated organizations. JAMIA Open, 2(4), 554–561. https://doi.org/10.1093/jamiaopen/ooz035
  • Gregg, E. W., Hora, I., & Benoit, S. R. (2019). Resurgence in diabetes-related complications. JAMA - Journal of the American Medical Association, 321(19), 1867–1868. https://doi.org/10.1001/jama.2019.3471
  • He, J., Hu, Y., Zhang, X., Wu, L., Waitman, L. R., & Liu, M. (2019). Multi-perspective predictive modeling for acute kidney injury in general hospital populations using electronic medical records. JAMIA Open, 2(1), 115–122. https://doi.org/10.1093/jamiaopen/ooy043
  • Jensen, P. B., Jensen, L. J., & Brunak, S. (2012). Mining electronic health records: Towards better research applications and clinical care. Nature Reviews Genetics, 13(6), 395–405. https://doi.org/10.1038/nrg3208
  • Jin, H., Wu, S., & Di Capua, P. (2015). Development of a clinical forecasting model to predict comorbid depression among diabetes patients and an application in depression screening policy making. Preventing Chronic Disease, 12(9), e142. https://doi.org/10.5888/pcd12.150047
  • Lachin, J. M., Genuth, S., Nathan, D. M., Zinman, B., & Rutledge, B. N. (2008). Effect of glycemic exposure on the risk of microvascular complications in the diabetes control and complications trial-revisited. Diabetes, 57(4), 995–1001. https://doi.org/10.2337/db07-1618
  • Lagani, V., Chiarugi, F., Thomson, S., Fursse, J., Lakasing, E., Jones, R. W., & Tsamardinos, I. (2015). Development and validation of risk assessment models for diabetes-related complications based on the DCCT/EDIC data. Journal of Diabetes and Its Complications, 29(4), 479–487. https://doi.org/10.1016/j.jdiacomp.2015.03.001
  • Leung, R. K. K., Wang, Y., Ma, R. C. W., Luk, A. O. Y., Lam, V., Ng, M., … & Chan, J. C. (2013). Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: A prospective case-control cohort analysis. BMC Nephrology, 14(1), 1. https://doi.org/10.1186/1471-2369-14-162
  • Long-term Trends in Diabetes. (2017). http://www.cdc.gov/diabetes/data
  • Maser, R. E., Steenkiste, A. R., Dorman, J. S., Nielsen, V. K., Bass, E. B., Manjoo, Q., … & Orchard, T. J. (1989). Epidemiological correlates of diabetic neuropathy. Report from Pittsburgh epidemiology of diabetes complications study. Diabetes, 38(11), 1456–1461. https://doi.org/10.2337/diab.38.11.1456
  • Nanayakkara, N., Ranasinha, S., Gadowski, A., Heritier, S., Flack, J. R., Wischer, N., … & Zoungas, S. (2018). Age, age at diagnosis and diabetes duration are all associated with vascular complications in type 2 diabetes. Journal of Diabetes and Its Complications, 32(3), 279–290. https://doi.org/10.1016/j.jdiacomp.2017.11.009
  • National Diabetes Statistics Report 2020. (2020). Estimates of diabetes and its burden in the United States.
  • Nguyen, B. P., Pham, H. N., Tran, H., Nghiem, N., Nguyen, Q. H., Do, T. T. T., … & Simpson, C. R. (2019). Predicting the onset of type 2 diabetes using wide and deep learning with electronic health records. Computer Methods and Programs in Biomedicine, 182(December), 105055. https://doi.org/10.1016/j.cmpb.2019.105055
  • Nichols, G. A., Desai, J., Lafata, J. E., Lawrence, J. M., O’Connor, P. J., Pathak, R. D., … & SUPREME-DM Study Group. (2012). Construction of a multisite datalink using electronic health records for the identification, surveillance, prevention, and management of diabetes mellitus: The SUPREME-DM project. Preventing Chronic Disease, 9(6), e110. https://doi.org/10.5888/pcd9.110311
  • Orchard, T. J., Dorman, J. S., Maser, R. E., Becker, D. J., Ellis, D., LaPorte, R. E., Kuller, L.H., Wolfson, S. K., & Drash, A. L. (1990). Factors associated with avoidance of severe complications after 25 Yr of IDDM: Pittsburgh epidemiology of diabetes complications study I. Diabetes Care, 13(7), 741–747. https://doi.org/10.2337/diacare.13.7.741
  • Ramanathan, A. S. (2017). Correlation of duration, hypertension and glycemic control with microvascular complications of diabetes mellitus at a tertiary care hospital. Integrative Molecular Medicine, 4(1), 1. https://doi.org/10.15761/imm.1000272
  • Shickel, B., Tighe, P. J., Bihorac, A., & Rashidi, P. (2018). Deep EHR: A survey of recent advances in deep learning techniques for electronic health record (EHR) analysis. IEEE Journal of Biomedical and Health Informatics, 22(5), 1589–1604. https://doi.org/10.1109/JBHI.2017.2767063
  • Song, X., Waitman, L. R., Yu, A. S., Robbins, D. C., Hu, Y., & Liu, M. (2020). Longitudinal risk prediction of chronic kidney disease in diabetic patients using temporal-enhanced gradient boosting machine: Retrospective cohort study. JMIR Medical Informatics, 8(1), e15510. https://doi.org/10.2196/15510
  • Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of imbalanced data: A review. International Journal of Pattern Recognition and Artificial Intelligence, 23(4), 687–719. https://doi.org/10.1142/S0218001409007326
  • Tsao, H. Y., Chan, P. Y., & Su, E. C. Y. (2018). Predicting diabetic retinopathy and identifying interpretable biomedical features using machine learning algorithms. BMC Bioinformatics, 19(Suppl 9), 30. https://doi.org/10.1186/s12859-018-2277-0
  • Wu, J., Roy, J., & Stewart, W. F. (2010). Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches. Medical Care, 48(6Suppl), S106–S113. https://doi.org/10.1097/MLR.0b013e3181de9e17
  • Association, A. D. (2018). Economic costs of diabetes in the U.S. in 2017. Diabetes Care, 41(5), 917–928. https://doi.org/10.2337/dci18-0007
  • Young, B. A., Lin, E., Von Korff, M., Simon, G., Ciechanowski, P., Ludman, E. J., … & Katon, W. J. (2008). Diabetes complications severity index and risk of mortality, hospitalization, and healthcare utilization. American Journal of Managed Care, 14(1), 15–24. https://www.ajmc.com/view/jan08-2781p15-23
  • Zarkogianni, K., Athanasiou, M., & Thanopoulou, A. C. (2018). Comparison of Machine Learning Approaches Toward Assessing the Risk of Developing Cardiovascular Disease as a Long-Term Diabetes Complication. IEEE Journal of Biomedical and Health Informatics, 22(5), 1637–1647. https://doi.org/10.1109/JBHI.2017.2765639
  • Zoungas, S., Woodward, M., Li, Q., Cooper, M. E., Hamet, P., Harrap, S., … & Chalmers, J. (2014). Impact of age, age at diagnosis and duration of diabetes on the risk of macrovascular and microvascular complications and death in type 2 diabetes. Diabetologia, 57(12), 2465–2474. https://doi.org/10.1007/s00125-014-3369-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.