902
Views
42
CrossRef citations to date
0
Altmetric
Reviews

Fused deposition processing polycaprolactone of composites for biomedical applications

& ORCID Icon
Pages 1365-1398 | Received 01 Jun 2018, Accepted 16 Dec 2018, Published online: 17 Jan 2019

References

  • Shoichet, M. S.; Polymer Scaffolds for Biomaterials Applications. Macromolecules. 2010, 43, 581–591. DOI: 10.1021/ma901530r.
  • Tibbitt, M. W.; Langer, R. Living Biomaterials. Acc. Chem. Res. 2017, 50, 508–513.
  • Chu, C. C.;. Biologically Active Biodegradable Biomaterials. ACS Symp. Ser. 2001, 792, 155–174.
  • Yu, Y.; Wu, R.-X.; Yin, Y.; Chen, F.-M. Directing Immunomodulation Using Biomaterials for Endogenous Regeneration. J. Mater. Chem. B. 2016, 4, 569–584.
  • Farris, A. L.; Rindone, A. N.; Grayson, W. L. Oxygen Delivering Biomaterials for Tissue Engineering. J. Mater. Chem. B. 2016, 4, 3422–3432.
  • Hoffman, A. S.; Synthetic Polymeric Biomaterials. Polym. Mater. Artif. Organs. 1984, 256, 2–13.
  • Dawson, E.; Mapili, G.; Erickson, K.; Taqvi, S.; Roy, K. Biomaterials for Stem Cell Differentiation. Adv. Drug Deliv. Rev. 2008, 60, 215–228.
  • Palaganas, N. B.; Mangadlao, J. D.; de Leon, A. C.; Palaganas, J. O.; Pangilinan, K. D.; Lee, Y. J.; Advincula, R. C. 3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography. ACS Appl. Mater. Interfaces. 2017, 9, 34314–34324.
  • Higginbotham, A. L.; Lomeda, J. R.; Morgan, A. B.; Tour, J. M. Graphite Oxide Flame-Retardant Polymer Nanocomposites. ACS Appl. Mater. Interfaces. 2009, 1, 2256–2261.
  • Guarino, V.; Sorrentino, L.; Guarino, A. Polycaprolactone: Synthesis, Properties, and Applications. In Encyclopedia of Polymer Science and Technology; Kroschwitz, J. I., Mark, H. F., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, 2017; pp 1–36. DOI: 10.1002/0471440264.pst658.
  • Mi, H.-Y.; Jing, X.; Napiwocki, B. N.; Hagerty, B. S.; Chen, G.; Turng, L.-S. Biocompatible, Degrada-ble Thermoplastic Polyurethane Based on Polycaprolactone-Block-Polytetrahydrofuran-Block-Polycaprolactone Copolymers for Soft Tissue Engineering. J. Mater. Chem. B. 2017, 5, 4137–4151. DOI: 10.1039/C7TB00419B.
  • Zander, N. E.; Orlicki, J. A.; Rawlett, A. M.; Beebe, T. P. Quantification of Protein Incorporated into Electrospun Polycaprolactone Tissue Engineering Scaffolds. ACS Appl. Mater. Interfaces. 2012, 4, 2074–2081.
  • Ren, X.; Feng, Y.; Guo, J.; Wang, H; Li, Q.; Yang, J.; Hao, X.; Lv, J.; Ma, N.; Li, W. Surface Modification and Endothelialization of Biomaterials as Potential Scaffolds for Vascular Tissue Engineering Applications. Chem. Soc. Rev. 2015, 44, 5680–5742.
  • Nyitray, C. E.; Chang, R.; Faleo, G.; Lance, K. D.; Bernards, D. A.; Tang, Q.; Desai, T. A. Polycaprolactone Thin-Film Micro-and Nanoporous Cell-Encapsulation Devices. ACS Nano.  2015, 9(6), 5675–5682.
  • Li, Q.; Ma, L.; Gao, C. Biomaterials for in Situ Tissue Regeneration: Development and Perspectives. J. Mater. Chem. B. 2015, 3, 8921–8938.
  • Manoukian, O. S.; Arul, M. R.; Sardashti, N.; Stedman, T.; James, R.; Rudraiah, S.; Kumbar, S. G. Biodegradable Polymeric Injectable Implants for Long-Term Delivery of Contraceptive Drugs. J. Appl. Polym. Sci. 2017, 46068, 1–9.
  • Mora-Solano, C.; Collier, J. H. Engaging Adaptive Immunity with Biomaterials. J. Mater. Chem. B. 2014, 2, 2409–2421.
  • Lin, J.; Bang, S. H.; Malakooti, M. H.; Sodano, H. A. Isolation of Aramid Nanofibers for High Strength and Toughness Polymer Nanocomposites. ACS Appl. Mater. Interfaces. 2017, 9, 11167–11175.
  • Ponnamma, D.; Sadasivuni, K. K.; Grohens, Y.; Guo, Q.; Thomas, S. Carbon Nanotube Based Elastomer Composites – An Approach Towards Multifunctional Materials. J. Mater. Chem. C. 2014, 2, 8446–8485.
  • Li, K.; Song, J.; Xu, M.; Kuga, S.; Zhang, L.; Cai, J. Extraordinary Reinforcement Effect of Three-Dimensionally Nanoporous Cellulose Gels in Poly(ε-caprolactone) Bionanocomposites. ACS Appl. Mater. Interfaces. 2014, 6, 7204–7213.
  • Thomassin, J. M.; Pagnoulle, C.; Bednarz, L.; Huynen, I.; Jerome, R.; Detrembleur, C. Foams of polycaprolactone/MWNT Nanocomposites for Efficient EMI Reduction. J. Mater. Chem. 2008, 18, 792–796.
  • Saravanamoorthy, S.; Muneeswaran, M.; Giridharan, N.; Velmathi, S. Solvent-Free Ring Opening Polymerization of ε-caprolactone and Electrical Properties of Polycaprolactone Blended BiFeO3 Nanocomposites. RSC Adv. 2015, 5, 43897–43905.
  • Kumar, S.; Bose, S.; Chatterjee, K. Amine-Functionalized Multiwall Carbon Nanotubes Impart Osteoinductive and Bactericidal Properties in poly(ε-caprolactone) Composites. RSC Adv. 2014, 4, 19086–19098.
  • Sarasini, F.; Tirillo, J.; Puglia, D.; Kenny, J. M.; Dominici, F.; Santulli, C.; Tofani, M.; De Santis, R. Effect of Different Lignocellulosic Fibres on poly(ε-caprolactone)-based Composites for Potential Applications in Orthotics. RSC Adv. 2015, 5, 23798–23809.
  • Saito, N.; Aoki, K.; Usui, Y.; Shimizu, M.; Hara, K.; Narita, N.; Ogihara, N.; Nakamura, K.; Ishigaki, N.; Kato, H.; et al. Application of Carbon Fibers to Biomaterials: A New Era of Nano-Level Control of Carbon Fibers after 30-Years of Development. Chem. Soc. Rev. 2011, 40, 3824–3834.
  • Jhala, D.; Rather, H.; Vasita, R. Polycaprolactone–Chitosan Nanofibers Influence Cell Morphology to Induce Early Osteogenic Differentiation. Biomater. Sci. 2016, 4, 1584–1595.
  • Mendoza, G.; Regiel-Futyra, A.; Andreu, V.; Sebastián, V.; Kyzioł, A., Stochel, G.; Arruebo, M. Bactericidal Effect of Gold-Chitosan Nanocomposites in Coculture Models of Pathogenic Bacteria and Human Macrophages. ACS Appl. Mater. Interfaces. 2017, 9, 17693–17701.
  • Kasyapi, N.; Dinesh Kumar, K.; Bhowmick, A. K. Sustainable Bionanocomposite from d,l-lactide/δ-valerolactone Triblock and Bionanowhiskers: Preparation, Characterization, and Properties. J. Appl. Polym. Sci. 2017, 46035, 1–11.
  • Allo, B. A.; Rizkalla, A. S.; Mequanint, K. Synthesis and Electrospinning of ?-Polycaprolactone-Bioactive Glass Hybrid Biomaterials via a Sol-Gel Process. Langmuir. 2010, 26, 18340–18348.
  • Augustine, R.; Dominic, E. A.; Reju, I.; Kaimal, B.; Kalarikkal, N.; Thomas, S. Electrospun Polycaprolactone Membranes Incorporated with ZnO Nanoparticles as Skin Substitutes with Enhanced Fibroblast Proliferation and Wound Healing. RSC Adv. 2014, 4, 24777–24785.
  • Saveleva, M. S.; Ivanov, A. N.; Kurtukova, M. O.; Atkin, V. S.; Ivanova, A. G.; Lyubun, G. P.; Martyukova, A. V.; Cherevko, E. I.; Sargsyan, A. K.; Fedonnikov, A. S.; Norkin, I. A. Hybrid PCL/CaCO 3 Scaffolds with Capabilities of Carrying Biologically Active Molecules: Synthesis, Loading and in Vivo Applications. Mater. Sci. Eng. C. 2018, 85, 57–67. DOI: 10.1016/j.msec.2017.12.019.
  • Murray, E.; Sayyar, S.; Thompson, B. C.; Gorkin III, R.; Officer, D. L.; Wallace, G. G. A Bio-Friendly, Green Route to Processable, Biocompatible Graphene/Polymer Composites. RSC Adv. 2015, 5, 45284–45290.
  • Costantino, U.; Bugatti, V.; Gorrasi, G.; Montanari, F.; Nocchetti, M.; Tammaro, L.; Vittoria, V. New Polymeric Composites Based on poly(ε-caprolactone) and Layered Double Hydroxides Containing Antimicrobial Species. ACS Appl. Mater. Interfaces. 2009, 1, 668–677.
  • Ahmad, M.; Nirmal, N. P.; Danish, M.; Chuprom, J.; Jafarzedeh, S. Characterisation of Composite Films Fabricated from Collagen/Chitosan and Collagen/Soy Protein Isolate for Food Packaging Applications. R. Soc. Chem. 2016, 6, 82191–82204.
  • Yuan, S.; Xiong, G.; Wang, X.; Zhang, S.; Choong, C. Surface Modification of Polycaprolactone Substrates Using Collagen-Conjugated Poly(Methacrylic Acid) Brushes for the Regulation of Cell Proliferation and Endothelialisation. J. Mater. Chem. 2012, 22, 13039.
  • Bhaw-Luximon, A.; Meeram, L. M.; Jugdawa, Y.; Helbert, W.; Jhurry, D. Oligoagarose-G-Polycaprolactone Loaded Nanoparticles for Drug Delivery Applications. Polym. Chem. 2011, 2, 77–79. DOI: 10.1039/C0PY00311E.
  • Karthik, S.; Jana, A.; Selvakumar, M.; Venkatesh, Y.; Paul, A.; Shah, S. S.; Singh, N. P. Coumarin Polycaprolactone Polymeric Nanoparticles: Light and Tumor Microenvironment Activated Cocktail Drug Delivery. J. Mater. Chem. B. 2017, 5, 1734–1741.
  • Agarwala, S.; Lee, J. M.; Ng, W. L.; Layani, M.; Yeong, W. Y.; Magdassi, S. A Novel 3D Bioprinted Flexible and Biocompatible Hydrogel Bioelectronic Platform. Biosens. Bioelectron. 2018, 102, 365–371.
  • Deoray, N.; Kandasubramanian, B. Review on Three-Dimensionally Emulated Fiber-Embedded Lactic Acid Polymer Composites: Opportunities in Engineering Sector. Polym. Plast. Technol. Eng. 2017, 1–15. DOI: 10.1080/03602559.2017.1354226.
  • Peterson, G. I.; Larsen, M. B.; Ganter, M. A.; Storti, D. W.; Boydston, A. J. 3D-Printed Mechanochromic Materials. ACS Appl. Mater. Interfaces. 2015, 7, 577–583.
  • Chan, H. N.; Tan, M. J. A.; Wu, H. Point-Of-Care Testing: Applications of 3D Printing. Lab Chip. 2017. DOI: 10.1039/C7LC00397H.
  • Zheng, Y.; Dong, R.; Shen, J.; Guo, S. Tunable Shape Memory Performances via Multilayer Assembly of Thermoplastic Polyurethane and Polycaprolactone. ACS Appl. Mater. Interfaces. 2016, 8, 1371–1380.
  • Wang, X.; Guo, Q.; Cai, X.; Zhou, S.; Kobe, B.; Yang, J. Initiator-Integrated 3D Printing Enables the Formation of Complex Metallic Architectures. ACS Appl. Mater. Interfaces. 2014, 6, 2583–2587.
  • Hart, L. R.; Li, S.; Sturgess, C.; Wildman, R.; Jones, J. R.; Hayes, W. 3D Printing of Biocompatible Supramolecular Polymers and Their Composites. ACS Appl. Mater. Interfaces. 2016, 8, 3115–3122.
  • Manzano, J. S.; Weinstein, Z. B.; Sadow, A. D.; Slowing, I. I. Direct 3D Printing of Catalytically Active Structures. ACS Catal. 2017, 7, 7567–7577.
  • Ho, C. M. B.; Mishra, A.; Hu, K.; An, J.; Kim, Y. J.; Yoon, Y. J. Review: Femtosecond-Laser-Based 3D Printing for Tissue Engineering and Cell Biology Applications. ACS Biomater. Sci. Eng. 2017, 7b00438, DOI: 10.1021/acsbiomaterials.7b00438.
  • Parra-Cabrera, C.; Achille, C.; Kuhn, S.; Ameloot, R. 3D Printing in Chemical Engineering and Catalytic Technology: Structured Catalysts, Mixers and Reactors. Chem. Soc. Rev. 2017. DOI: 10.1039/C7CS00631D.
  • Dang, T. T.; Nikkhah, M.; Memic, A.; Khademhosseini, A., Polymeric Biomaterials for Implantable Prostheses. In Natural and Synthetic Biomedical Polymers; Kumbar, S. G., Laurencin C. T., Deng, M., Eds.; Elsevier Inc.: New York, NY, 2014; DOI: 10.1016/B978-0-12-396983-5.00020-X.
  • Djonlagic, J.; Nikolic, M. S. Chapter 6. Biodegradable Polyesters: Synthesis and Physical Properties. In RSC Green Chemistry; Sharma, S. K., Mudhoo, A., Eds.; Royal Society of Chemistry: Cambridge, 2011; pp 149–196. DOI: 10.1039/9781849733458-00149.
  • Morais, J. M.; Papadimitrakopoulos, F.; Burgess, D. J. Biomaterials/Tissue Interactions: Possible Solutions to Overcome Foreign Body Response. Aaps J. 2010, 12, 188–196.
  • Koschwanez, H. E.; Reichert, W. M. In Vitro, in Vivo and Post Explantation Testing of Glucose-Detecting Biosensors: Current Methods and Recommendations. Biomaterials. 2007, 28, 3687–3703.
  • Callahan, I. V.;. T. D. & Natale, A. Catheter Ablation of Atrial Fibrillation. Med. Clin. North Am. 2008, 92, 179–201.
  • Buckingham, B.; Caswell, K.; Wilson, D. M. Real-Time Continuous Glucose Monitoring. Curr. Opin. Endocrinol. Diabetes Obes. 2007, 14, 288–295.
  • Bailey, T. S.; Zisser, H. C.; Garg, S. K. Reduction in Hemoglobin A1c with Real-Time Continuous Glucose Monitoring: Results from a 12-Week Observational Study. Diabetes Technol. Ther. 2007, 9, 203–210.
  • Yilmaz, E.;. Chitosan: A versatile biomaterial. Adv. Exp. Med. Biol. 2004, 553, 59–68.
  • Paradossi, G.; Cavalieri, F.; Chiessi, E.; Spagnoli, C.; Cowman, M. K. Poly(Vinyl Alcohol) as Versatile Biomaterial for Potential Biomedical Applications. J. Mater. Sci. Mater. Med. 2003, 14, 687–691.
  • Rouse, J. G.; Van Dyke, M. E. A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials (Basel). 2010, 3, 999–1014.
  • Dhandayuthapani, B.; Sakthi, D. K. Biomaterials for Biomedical Applications. Biomed. Appl. Polym. Mater. Compos. 2016, 1–20. DOI: 10.1002/9783527690916.ch1.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798.
  • Chen, D. R.; Bei, J. Z.; Wang, S. G. Polycaprolactone Microparticles and Their Biodegradation. Polym. Degrad. Stab. 2000, 67, 455–459.
  • Jain, J. P.; Chitkara, D.Kumar, N. Polyanhydrides as Localized Drug Delivery Carrier: An Update. Expert Opinion on Drug Delivery 2008, 5(8), 889–907. DOI: 10.1517/17425247.5.8.889.
  • Hoskins, J. N.; Grayson, S. M. Synthesis and Degradation Behavior of Cyclic Poly(ε-Caprolactone). Macromolecules 2009, 42(17), 6406–6413. DOI: 10.1021/ma9011076.
  • Goor, O. J. G. M.; Hendrikse, S. I. S.; Dankers, P. Y. W.; Meijer, E. W. From Supramolecular Polymers to Multi-Component Biomaterials. Chem. Soc. Rev. 2017. DOI: 10.1039/C7CS00564D.
  • Pladis, P.; Karidi, K.; Mantourlias, T.; Kiparissides, C. An Experimental and Theoretical Investigation of the Ring-Opening Polymerization of L,L-Lactide. Macromol. React. Eng. 2014, 8, 813–825.
  • Kowalski, A.; Duda, A.; Penczek, S. Mechanism of Cyclic Ester Polymerization Initiated with Tin(II) Octoate. 2. † Macromolecules Fitted with Tin(II) Alkoxide Species Observed Directly in MALDI−TOF Spectra. Macromolecules. 2000, 33, 689–695.
  • Stridsberg, K. M.; Ryner, M.; Albertsson, A.-C. Controlled Ring-Opening Polymerization: Polymers with Designed Macromolecular Architecture; In Degradable Aliphatic Polyesters; Albertsson, A.-C., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2002; Vol. 157, pp 41–65. DOI: 10.1007/3-540-45734-8_2.
  • Su, Y.; Denbeigh, J. M.; Camilleri, E. T.; Riester, S. M.; Parry, J. A.; Wagner, E. R.; Yaszemski, M. J.; Dietz, A. B.; Cool, S. M.; van Wijnen, A. J.; et al. Extracellular Matrix Protein Production in Human Adipose-Derived Mesenchymal Stem Cells on Three-Dimensional Polycaprolactone (PCL) Scaffolds Responds to GDF5 or FGF2. Gene Rep. 2018, 10, 149–156.
  • Lee, M. W.; An, S.; Yoon, S. S.; Yarin, A. L. Advances in Self-Healing Materials Based on Vascular Networks with Mechanical Self-Repair Characteristics. Adv. Colloid Interface Sci. 2018. DOI: 10.1016/j.cis.2017.12.010.
  • Zhang, P.; Arceneaux, D. J.; Khattab, A. Mechanical Properties of 3D Printed Polycaprolactone Honeycomb Structure. J. Appl. Polym. Sci. 2018, 135(12), 46018. DOI: 10.1002/app.46018.
  • Guarino, V.; Gentile, G.; Sorrentino, L.; Ambrosio, L. Polycaprolactone: Synthesis, Properties, and Applications. Encycl. Polym. Sci. Technol. 2017. DOI: 10.1002/0471440264.pst658.
  • Rodriguez, E. D.; Luo, X.; Mather, P. T. Linear/Network Poly(?-Caprolactone) Blends Exhibiting Shape Memory Assisted Self-Healing (SMASH). ACS Appl. Mater. Interfaces. 2011, 3, 152–161.
  • Zhang, P.; Li, G. Advances in Healing-On-Demand Polymers and Polymer Composites. Prog. Polym. Sci. 2016, 57, 32–63.
  • Zhang, P.; Li, G. Healing-On-Demand Composites Based on Polymer Artificial Muscle. Polymer (United Kingdom). 2015, 64, 29–38.
  • Luo, X.; Mather, P. T. Shape Memory Assisted Self-Healing (SMASH) Coating. Macromolecules. 2010, 6, 2146.
  • Alemán-Domínguez, M. E.; Ortega, Z.; Benítez, A. N.; Monzón, M.; Garzón, L. V.; Ajami, S.;  Liu, C. Tunability of Polycaprolactone Hydrophilicity by Carboxymethyl Cellulose Loading. J. Appl. Polym. Sci. 2018, 135, 1–8.
  • Goonasekera, C. S.; Jack, K. S.; Cooper-White, J. J.; Grøndahl, L. Dispersion of Hydroxyapatite Nanoparticles in Solution and in Polycaprolactone Composite Scaffolds. J. Mater. Chem. B. 2016, 4, 409–421.
  • Xu, H.; Wang, L.; Teng, C.; Yu, M. Biodegradable Composites: Ramie Fibre Reinforced PLLA-PCL Composite Prepared by in Situ Polymerization Process. Polym. Bull. 2008, 61, 663–670.
  • Bledzki, A. K.; Jochen, G. Composites Reinforced with Cellulose Based Fibers. Prog. Poly Sci. 1999, 24, 221–274.
  • Shanks, R. A.; Hodzic, A.; Ridderhof, D. Composites of Poly(Lactic Acid) with Flax Fibers Modified by Interstitial Polymerization. J. Appl. Polym. Sci. 2006, 101, 3620–3629.
  • Lim, L.-T.; Auras, R.; Rubino, M. Processing Technologies for Poly(Lactic Acid). Prog. Polym. Sci. 2008, 33, 820–852.
  • Koronis, G.; Silva, A.; Soares Dias, A. P. Development of Green Composites Reinforced with Ramie Fabrics: Effect of Aging on Mechanical Properties of Coated and Uncoated Specimens. Fibers Polym. 2014, 15, 2618–2624.
  • Mathew, A. P.; Oksman, K.; Sain, M. Mechanical Properties of Biodegradable Composites from Poly Lactic Acid (PLA) and Microcrystalline Cellulose (MCC). J. Appl. Polym. Sci. 2005, 97, 2014–2025.
  • Sanjay, M. R.; Arpitha, G. R.; Naik, L. L.; Gopalakrishna, K.; Yogesha, B. Applications of Natural Fibers and Its Composites: An Overview. Nat. Resour. 2016, 7, 108–114.
  • Chen, C.; Watkins-Curry, P.; Smoak, M.; Hogan, K.; Deese, S.; McCandless, G. T.; Chan, J. Y.; Hayes, D. J. Targeting Calcium Magnesium Silicates for Polycaprolactone/Ceramic Composite Scaffolds. ACS Biomater. Sci. Eng. 2015, 1, 94–102.
  • Kim, M.; Kim, G. Physical and Biological Activities of Newly Designed, Macro-Pore-Structure-Controlled 3D Fibrous poly(ε-caprolactone)/hydroxyapatite Composite Scaffolds. RSC Adv. 2015, 5, 26954–26964.
  • Fujihara, K.; Kotaki, M.; Ramakrishna, S. Guided Bone Regeneration Membrane Made of Polycaprolactone/Calcium Carbonate Composite Nano-Fibers. Biomaterials. 2005, 26, 4139–4147. DOI: 10.1016/j.biomaterials.2004.09.014.
  • Narula, C. K.; Allard, L. F.; Graham, G. W. Sol–Gel Processed Fluorite-Structured PrO –Zro Mixed Oxides. J. Mater. Chem. 1999, 9, 1155–1159.
  • Garcés, J. M.; Moll, D. J.; Bicerano, J.; Fibiger, R.; McLeod, D. G. Polymeric Nanocomposites for Automotive Applications. Adv. Mater. 2000, 12, 1835–1839.
  • Takemori, M. T.;. Towards an Understanding of the Heat Distortion Temperature of Thermoplastics. Polym. Eng. Sci. 1979, 19, 1104–1109.
  • Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28, 1539–1641.
  • Yin, Y.; Rassias, D.; Jain, A., Polymeric Biomaterials for Medical Diagnostics in the Central Nervous System. In Natural and Synthetic Biomedical Polymers; Elsevier Inc, 2014; pp 373–386. DOI: 10.1016/B978-0-12-396983-5.00023-5.
  • Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive Manufacturing of Biomaterials. Prog Mat Sci. 2018, 93, 45–111.
  • Liu, Y.; Wang, A.; Claus, R. Molecular Self-Assembly of TiO 2 /Polymer Nanocomposite Films. J. Phys. Chem. B. 1997, 101, 1385–1388.
  • Banik, B. L.; Brown, J. L., Polymeric Biomaterials in Nanomedicine. In Natural and Synthetic Biomedical Polymers; Elsevier Inc., 2014, 387–395. DOI: 10.1016/B978-0-12-396983-5.00024-7.
  • Lin, B.; Gelves, G. A.; Haber, J. A.; Sundararaj, U. Electrical, Rheological, and Mechanical Properties of Polystyrene/Copper Nanowire Nanocomposites. Ind. Eng. Chem. Res. 2007, 46, 2481–2487.
  • Okada, A.; Usuki, A. Twenty Years of Polymer-Clay Nanocomposites. Macromol. Mater. Eng. 2006, 291, 1449–1476.
  • Fasolino, A.; Los, J. H.; Katsnelson, M. I. Intrinsic Ripples in Graphene. Nat. Mater. 2007, 6, 858–861.
  • Bhattacharya, M.;. Polymer nanocomposites-AComparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers. Materials (Basel). 2016, 9, 1–35.
  • Ulus, H.; Kaybal, H. B.; Eskizeybek, V.; Sahin, Ö. S.; Avcı, A. S. C. Static and Dynamic Mechanical Responses of CaCO3 Nanoparticle Modified Epoxy/Carbon Fiber Nanocomposites. Compos. Part B. 2018, 140, 223–231. DOI: 10.1016/j.compositesb.2017.12.013.
  • Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’ko, Y. K. Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites. Carbon N. Y. 2006, 44, 1624–1652.
  • Bhatia, R.; Kumari, K.; Rani, R.; Suri, A.; Pahuja, U.; Singh, D. A Critical Review of Experimental Results on Low Temperature Charge Transport in Carbon Nanotubes Based Composites. Rev. Phys. 2018, 3, 15–25. DOI: 10.1016/j.revip.2017.12.001.
  • Corrales, T.; Larraza, I.; Catalina, F.; Portolés, T.; Ramírez-Santillán, C.; Matesanz, M.; Abrusci, C. In Vitro Biocompatibility and Antimicrobial Activity of poly(ε-caprolactone)/montmorillonite Nanocomposites. Biomacromolecules. 2012, 13, 4247–4256. DOI: 10.1021/bm301537g.
  • Elias, E.; Sarath, C. C.;  Zachariah, A. K.; Vineesh, K. V.; Sunil, M. A.;  Bose, S.;  Fernando G.; Souza, Jr.; Thomas, S. Percolated Network Formation in Biocidal 3D Porous PCL/clay Nanocomposite Scaffolds: Effect of Organic Modifier on Interfacial and Water Sorption Properties. RSC Adv. 2016, 6, 85107-85116.
  • Thomassin, J.-M.; Lou, X.;  Pagnoulle, C.;  Saib, A.;  Bednarz, L.;,  Huynen, I.;  Jérôme, R.;  Detrembleur, C. Multiwalled Carbon Nanotube/Poly(Epsilon-Caprolactone) Nanocomposites with Exceptional Electromagnetic Interference Shielding Properties. J. Phys. Chem. C. 2007, 111, 11186–11192.
  • Rizwan, M.; Rizwan, M. Synthesis of a Novel Organosoluble, Biocompatible, and Antibacterial Chitosan Derivative for Biomedical Applications. J. Appl. Polym. Sci. 2018, 135, 1–10.
  • Jalili-Firoozinezhad, S.; Moghadam, M.H.M.; Ghanian, M. H.; Ashtiani, M. K.;  Alimadadi, H.; Baharvand, H.; Martin I.; Scherberich, A. Polycaprolactone-Templated Reduced-Graphene Oxide Liquid Crystal Nanofibers Towards Biomedical Applications. RSC Adv. 2017, 7, 39628–39634.
  • Santos, F. G.; Bonkovoski, L. C.; Garcia, F. P.; Cellet, T. S.P.; Witt, M. A.; Nakamura, C. V.; Rubira, A. F.; Muniz, E. C. Antibacterial Performance of a PCL-PDMAEMA Blend Nanofiber-Based Scaffold Enhanced with Immobilized Silver Nanoparticles. ACS Appl. Mater. Interfaces. 2017, 9, 9304–9314.
  • Liu, C.; Liu, B.; Chan-Park, M. B. Synthesis of Polycaprolactone-Polyimide-Polycaprolactone Triblock Copolymers via a 2-Step Sequential Copolymerization and Their Application as Carbon Nanotube Dispersants. Polym. Chem. 2017, 18, 888–897.
  • Huang, P. S.; Yang, C.; Liu, J.; Wang, W.; Guo, S.; Li, J.; Sun, Y.; Dong, H.; Deng, L.;  Zhang, J.; Liu, J.; Dong, A. Improving the Oral Delivery Efficiency of Anticancer Drugs by Chitosan Coated Polycaprolactone-Grafted Hyaluronic Acid Nanoparticles. J. Mater. Chem. B. 2014, 2, 4021–4033.
  • Hu, W. W.; Wu, Y. C.; Hu, Z. C. The Development of an Alginate/Polycaprolactone Composite Scaffold for in Situ Transfection Application. Carbohydr. Polym. 2018, 183, 29–36.
  • Seema, K. M.; Mamba, B. B.; Njuguna, J.; Bakhtizin, R. Z.; Mishra, A. K. Removal of Lead (II) from Aqeouos Waste Using (Cd-Pcl-Tio2) Bio-Nanocomposites. Int. J. Biol. Macromol. 2018, 109, 136–142.
  • Avella, M.; Errico, M. E.; Laurienzo, P.; Martuscelli, E.; Raimo, M.; Rimedio, R. Preparation and Characterisation of Compatibilised Polycaprolactone/Starch Composites. Polymer (Guildf). 2000, 41, 3875–3881. DOI: 10.1016/S0032-3861(99)00663-1.
  • Chen, J. P.; Chang, Y. S. Preparation and Characterization of Composite Nanofibers of Polycaprolactone and Nanohydroxyapatite for Osteogenic Differentiation of Mesenchymal Stem Cells. Colloids Surf. B Biointerfaces. 2011, 86, 169–175. DOI: 10.1016/j.colsurfb.2011.03.038.
  • Retzepi, M.; Donos, N. Guided Bone Regeneration: Biological Principle and Therapeutic Applications. Clin. Oral Implants Res. 2010, 21, 567–576. DOI: 10.1111/j.1600-0501.2010.01922.x.
  • Daniels, A. U.; Chang, M. K.; Andriano, K. P. Mechanical Properties of Biodegradable Polymers and Composites Proposed for Internal Fixation of Bone. J. Appl. Bio Mater. 1990, 1, 57–78. DOI: 10.1002/jab.770010109.
  • Guo, C.; Zhou, L.; Lv, J. Effects of Expandable Graphite and Modified Ammonium Polyphosphate on the Flame-Retardant and Mechanical Properties of Wood Flour-Polypropylene Composites. Polym. Polym. Compos. 2013, 21, 449–456.
  • Lahiri, D.; Thein-Han, W. W.; Mali, S. A.; Somani, M. C.; Karjalainen, L. P. Boron Nitride Nanotube Reinforced Polylactide-Polycaprolactone Copolymer Composite: Mechanical Properties and Cytocompatibility with Osteoblasts and Macrophages in Vitro. Acta Biomater. 2010, 6, 3524–3533. DOI: 10.1016/j.actbio.2009.12.017.
  • Lepoittevin, B.; Devalckenaere, M.; Pantoustier, N.; Alexandre, M.; Kubies, D.; Calberg, C.; Jérôme, R.; Dubois, P. Poly(ε-caprolactone)/clay Nanocomposites Prepared by Melt Intercalation: Mechanical, Thermal and Rheological Properties. Polymer (Guildf). 2002, 43, 4017–4023. DOI: 10.1016/S0032-3861(02)00229-X.
  • Wu, C. S.;. Physical Properties and Biodegradability of Maleated-Polycaprolactone/Starch Composite. Polym. Degrad. Stab. 2003, 80, 127–134. DOI: 10.1016/S0141-3910(02)00393-2.
  • Boumail, A.; Salmieri, S.; Klimas, E.; Tawema, P. O.; Bouchard, J.; Lacroix, M. Characterization of Trilayer Antimicrobial Diffusion Films (Adfs) Based on Methylcellulose-Polycaprolactone Composites. J. Agric. Food Chem. 2013, 61, 811–821.
  • Liao, J.; Luo, Z.; Zhang, Y.; Zhang, X.; Cheng, J.; Wu, Q. Effects of a Novel Compatible Interface Structure on the Properties of Starch – PCL Composites. New J. Chem. 2014, 2522–2529. DOI: 10.1039/c3nj01647a.
  • Yıldırım, S.; Demirtaş, T. T.; Dinçer, C. A.; Yıldız, N.; Karakeçili, A. Preparation of Polycaprolactone/Graphene Oxide Scaffolds: A Green Route Combining Supercritial CO2technology and Porogen Leaching. J. Supercrit. Fluids. 2018, 133, 156–162. DOI: 10.1016/j.supflu.2017.10.009.
  • Lancus, A.; Grenoble, U. J.; National, I. Carbohydrate-Decorated PCL Fibers for Specific Protein Adhesion. ́Biomacromolecules. 2013, 14(6), 1877–1884. DOI: 10.1021/bm400263d.
  • Patel, S. K.; Lavasanifar, A.; Choi, P. Roles of Nonpolar and Polar Intermolecular Interactions in the Improvement of the Drug Loading Capacity of PEO-b-PCL with Increasing PCL Content for Two Hydrophobic Cucurbitacin Drugs. Biomacromolecules. 2009, 10, 2584–2591. DOI: 10.1021/bm900512h.
  • Kulkarni, B.; Jayakannan, M. Fluorescent-Tagged Biodegradable Polycaprolactone Block Copolymer FRET Probe for Intracellular Bioimaging in Cancer Cells. ACS Biomater. Sci. Eng. 2017, 3, 2185–2197. DOI: 10.1021/acsbiomaterials.7b00426.
  • Gea Rodi, E.; Mangeon, C.; Dessauw, E.; Sansalone, V.; Lemaire, T.; Renard, E.; Langlois, V. Functionalization of Miscanthus by Photoactivated Thiol-Ene Addition to Improve Interfacial Adhesion with Polycaprolactone. ACS Sustain. Chem. Eng. 2016, 4, 5475–5482. DOI: 10.1021/acssuschemeng.6b01041.
  • Saveleva, M. S.; Ivanov, A. N.; Kurtukova, M. O.; Atkin, V. S.; Ivanova, A. G.; Lyubun, G. P.; Martyukova, A. V.; Cherevko, E. I.; Sargsyan, A. K.; Fedonnikov, A. S.; et al. Hybrid PCL/CaCO3scaffolds with Capabilities of Carrying Biologically Active Molecules: Synthesis, Loading and in Vivo Applications. Mater. Sci. Eng. C. 2018, 85, 57–67. DOI: 10.1016/j.msec.2017.12.019.
  • Schmücker, C.; Stevens, G. W.; Mumford, K. A. Liquid Marble Formation and Solvent Vapor Treatment of the Biodegradable Polymers Polylactic Acid and Polycaprolactone. J. Colloid Interface Sci. 2018, 514, 349–356. DOI: 10.1016/j.jcis.2017.12.033.
  • Buwalda, S.; Al Samad, A.; El Jundi, A.; Bethry, A.; Bakkour, Y.; Coudane, J.; Nottelet, B. Stabilization of Poly(Ethylene glycol)-poly(ε-caprolactone) Star Block Copolymer Micelles via Aromatic Groups for Improved Drug Delivery Properties. J. Colloid Interface Sci. 2018, 514, 468–478. DOI: 10.1016/j.jcis.2017.12.057.
  • Farahani, R. D.; Dubé, M.; Therriault, D. Three-Dimensional Printing of Multifunctional Nanocomposites : Manufacturing Techniques and Applications. Adv.Mate. 2016, 28, 5794–5821. DOI: 10.1002/adma.201506215.
  • Invernizzi, M.; Natale, G.; Levi, M.; Turri, S.; Griffini, G. UV-assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites. Materials (Basel). 2016, 9, 583. DOI: 10.3390/ma9070583.
  • Aïssa, B.; Haddad, E.; Jamroz, W.; Hassani, S.; Farahani, R. D.; Merle, P. G.; Therriault, D. Micromechanical Characterization of Single-Walled Carbon Nanotube Reinforced Ethylidene Norbornene Nanocomposites for Self-Healing Applications. Smart Mater. Struct. 2012, 21, 105028. DOI: 10.1088/0964-1726/21/10/105028.
  • Abbasi, S.; Carreau, P. J.; Derdouri, A.; Moan, M. Rheological Properties and Percolation in Suspensions of Multiwalled Carbon Nanotubes in Polycarbonate. Rheol. Acta. 2009, 48, 943–959. DOI: 10.1007/s00397-009-0375-7.
  • Thostenson, E. T.; Chou, T. W. Processing-Structure-Multi-Functional Property Relationship in Carbon Nanotube/Epoxy Composites. Carbon N. Y. 2006, 44, 3022–3029. DOI: 10.1016/j.carbon.2006.05.014.
  • Guo, S.; Yang, X.; Heuzey, M.-C.; Therriault, D. 3D Printing of a Multifunctional Nanocomposite Helical Liquid Sensor. Nanoscale. 2015, 7, 6451–6456.
  • Hassani, M.; Mureithi, N. W.; Gosselin, F. P. Large Coupled Bending and Torsional Deformation of an Elastic Rod Subjected to Fluid Flow. J. Fluids Struct. 2016, 62, 367–383.
  • Khanbabaei, G.; Aalaie, J.; Rahmatpour, A.; Khoshniyat, A.; Gharabadian, M. A. Preparation and Properties of Epoxy-Clay Nanocomposites. J. Macromol. Sci. Part B Phys. 2007, 46, 975–986.
  • Ludueña, L. N.; Alvarez, V. A.; Vazquez, A. Processing and Microstructure of PCL/clay Nanocomposites. Mater. Sci. Eng. A. 2007, 460–461, 121–129.
  • Velmurugan, R.; Mohan, T. P. Epoxy-Clay Nanocomposites and Hybrids: Synthesis and Characterization. J. Reinf. Plast. Compos. 2009, 28, 17–37.
  • Tanaka, T.; Montanari, G. C.; Mulhaupt, R. Polymer Nanocomposites as Dielectrics and Electrical Insulation-Perspectives for Processing Technologies, Material Characterization and Future Applications. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 763–784.
  • Qin, Y.;. Alginate Fibers: An Overwiew of the Production Processes and Applications in Wound Management. Polym. Int. 2008, 57, 171–180.
  • Santis, R. De; Catauro, M.; Silvio, L. D.; Manto, L.; Raucci, M. G.; Ambrosio, L.; Nicolais, L. Effects of Polymer Amount and Processing Conditions on the in Vitro Behaviour of Hybrid Titanium Dioxide/Polycaprolactone Composites. Biomaterials. 2007, 28, 2801–2809.
  • Giannelis, E. P.; Krishnamoorti, R.; Manias, E. Polymer-Silicate Nanocomposites: Model Systems for Confined Polymers and Polymer Brushes. Advances in Polymer Science 1999, 138, 107–147. Springer: Berlin, Heidelberg.
  • Giannelis, E.;. Polymer Layered Silicate Nanocomposi-tes. Adv. Mater. 1996, 29–35. DOI: 10.1002/adma.19960080104.
  • Quiles-Carrillo, L.; Montanes, N.; Pineiro, F.; Jorda-Vilaplana, A.; Ductility, Torres-Giner, S. Ductility and Toughness Improvement Of Injection-molded Compostable Pieces of Polylactide by Melt Blending with Poly(ε-caprolactone) and Thermoplastic Starch. Materials. 2018, 11(11), 2138. DOI: 10.3390/ma11112138.
  • Matzinos, P.; Tserki, V.; Gianikouris, C.; Pavlidou, E.; Panayiotou, C. Processing and Characterization of LDPE/starch/PCL Blends. Eur. Polym. J. 2002, 38, 1713–1720.
  • Matzinos, P.; Tserki, V.; Kontoyiannis, A.; Panayiotou, C. Processing and Characterization of Starch/Polycaprolactone Products. Polym. Degrad. Stab. 2002, 77, 17–24.
  • Roorkee. Lecture 4.3: Extrusion of Plastics. NPTEL: Lecture 4.3 Extrusion of Plastics, 2019. https://nptel.ac.in/courses/112107085/15 ( accessed Jan 02, 2019).
  • Ali Akbari Ghavimi, S.; Ebrahimzadeh, M. H.; Solati-Hashjin, M.; Abu Osman, N. A. Polycaprolactone/Starch Composite: Fabrication, Structure, Properties, and Applications. Journal of Biomedical Materials Research Part A 2015, 103(7), 2482–2498. DOI: 10.1002/jbm.a.35371.
  • Sarazin, P.; Li, G.; Orts, W. J.; Favis, B. D. Binary and Ternary Blends of Polylactide, Polycaprolactone and Thermoplastic Starch. Polymer (Guildf). 2008, 49, 599–609.
  • Villmow, T.; Kretzschmar, B.; Pötschke, P. Influence of Screw Configuration, Residence Time, and Specific Mechanical Energy in Twin-Screw Extrusion of Polycaprolactone/Multi-Walled Carbon Nanotube Composites. Compos. Sci. Technol. 2010, 70, 2045–2055.
  • Ludueña, L. N.; Kenny, J. M.; Vázquez, A.; Alvarez, V. A. Effect of Extrusion Conditions and Post-Extrusion Techniques on the Morphology and Thermal/Mechanical Properties of Polycaprolactone/Clay Nanocomposites. J. Compos. Mater. 2014, 48, 2059–2070.
  • John, J.; Tang, J.; Bhattacharya, M. Processing of Biodegradable Blends of Wheat Gluten and Modified Polycaprolactone. Polymer (Guildf). 1998, 39, 2883–2895.
  • Sengupta, R.; Chakraborty, S.; Bandyopadhyay, S.; Dasgupta, S.; Mukhopadhyay, R.; Auddy, K.; Deuri, S. A Short Review on Rubber/Clay Nanocomposites with Emphasis on Mechanical Properties. Engineering. 2007, 47, 21–25.
  • Abdolmohammadi, S.; Siyamak, S.; Ibrahim, N. A.; Yunus W.; Rahman, W. M. Z. A.; Mohamad Zaki Azizi, S.; Fatehi, A. Enhancement of Mechanical and Thermal Properties of Polycaprolactone/Chitosan Blend by Calcium Carbonate Nanoparticles. Int. J. Mol. Sci. 2012, 13, 4508–4522.
  • IIT Kanpur. Resin Transfer Molding https://nptel.ac.in/courses/112104221/13 ( accessed Jan 1, 2019).
  • Shor, L., et al. Precision Extruding Deposition (PED) Fabrication of Polycaprolactone (PCL) Scaffolds for Bone Tissue Engineering. Biofabrication. 2009, 1.
  • Yao, D.; Güçeri, S.; Chang, R.; Gordon, J.; Kang, Q.; Hartsock, L.; An, Y.; Sun, W. Fabrication of Polycaprolactone Scaffolds Using a Sacrificial Compression-Molding Process. J. Biomed. Mater. Res. Part B Appl. Biomater. 2006, 77, 287–295.
  • Vertuccio, L.; Gorrasi, G.; Sorrentino, A.; Vittoria, V. Nano Clay Reinforced PCL/starch Blends Obtained by High Energy Ball Milling. Carbohydr. Polym. 2009, 75, 172–179.
  • Santos, M. I.; Unger, R. E.; Sousa, R. A.; Reis, R. L.; Kirkpatrick, C. J. Crosstalk between Osteoblasts and Endothelial Cells Co-Cultured on a Polycaprolactone-Starch Scaffold and the in Vitro Development of Vascularization. Biomaterials. 2009, 30, 4407–4415.
  • Maheshwari, S. U.; Kumar, S. V.; Nagiah, N.; Uma, T. S. Electrospinning of Polyvinylalcohol-Polycaprolactone Composite Scaffolds for Tissue Engineering Applications. Polym. Bull. 2013, 70, 2995–3010.
  • Doustgani, A.; Vasheghani-Farahani, E.; Soleimani, M.; Hashemi-Najafabadi, S. Optimizing the Mechanical Properties of Electrospun Polycaprolactone and Nanohydroxyapatite Composite Nanofibers. Compos. Part B Eng. 2012, 43, 1830–1836.
  • Zhang, Y.; Ouyang, H.; Chwee, T. L.; Ramakrishna, S.; Huang, Z. M. Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds. J. Biomed. Mater. Res. Part B Appl. Biomater. 2005, 72, 156–165.
  • Wu, H.; Wan, Y.; Cao, X.; Dalai, S.; Wang, S.; Zhang, S. Fabrication of Chitosan-G-Polycaprolactone Copolymer Scaffolds with Gradient Porous Microstructures. Mater. Lett. 2008, 62, 2733–2736.
  • Shor, L.; Güçeri, S.; Wen, X.; Gandhi, M.; Sun, W. Fabrication of Three-Dimensional Polycaprolactone/Hydroxyapatite Tissue Scaffolds and Osteoblast-Scaffold Interactions in Vitro. Biomaterials. 2007, 28, 5291–5297.
  • Tay, B. Y.; Zhang, S. X.; Myint, M. H.; Ng, F. L.; Chandrasekaran, M.; Tan, L. K. A. Processing of Polycaprolactone Porous 2020 Structure for Scaffold Development. J. Mater. Process. Technol. 2007, 182, 117–121.
  • Park, S. A.; Lee, S. H.; Kim, W. D. Fabrication of Porous Polycaprolactone/Hydroxyapatite (PCL/HA) Blend Scaffolds Using a 3D Plotting System for Bone Tissue Engineering. Bioprocess Biosyst. Eng. 2011, 34, 505–513.
  • Park, S.; Kim, G.; Jeon, Y. C.; Koh, Y.; Kim, W. 3D Polycaprolactone Scaffolds with Controlled Pore Structure Using a Rapid Prototyping System. J. Mater. Sci. Mater. Med. 2009, 20, 229–234.
  • Eshraghi, S.; Das, S. Micromechanical Finite-Element Modeling and Experimental Characterization of the Compressive Mechanical Properties of Polycaprolactone-Hydroxyapatite Composite Scaffolds Prepared by Selective Laser Sintering for Bone Tissue Engineering. Acta Biomater. 2012, 8, 3138–3143.
  • Cao, T.; Ho, K.-H.; Teoh, S.-H. Scaffold Design and in Vitro Study of Osteochondral Coculture in a Three-Dimensional Porous Polycaprolactone Scaffold Fabricated by Fused Deposition Modeling. Tissue Eng. 2003, 9, 103–112.
  • Williams, J. M.; Adewunmi, A.; Schek, R. M.; Flanagan, C. L.; Krebsbach, P. H.; Feinberg, S. E.; Hollister, S. J.; Das, S. Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated via Selective Laser Sintering. Biomaterials. 2005, 26, 4817–4827.
  • Mazzoli, A.; Ferretti, C.; Gigante, A.; Salvolini, E.; Mattioli-Belmonte, M. Selective Laser Sintering Manufacturing of Polycaprolactone Bone Scaffolds for Applications in Bone Tissue Engineering. Rapid Prototyp. J. 2015, 21, 386–392.
  • Hutmacher, D. W.; Schantz, T.; Zien, I.; Ng, K. W.; Teoh, S. H.; Tan, K. C. Mechanical Properties and Cell Cultural Response of Polycalrolactone Scaffolds Designed and Fabricated via Fused Deposition Modelling. J. Biomedial Mater. Res. 2001, 55, 203–216.
  • Ivanova, O.; Williams, C.; Campbell, T. Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges. Rapid Prototyp. J. 2013, 19, 353–364.
  • Korde, J. M.; Shaikh, M.; Kandasubramanian, B. Bionic Prototyping of Honeycomb Patterned Polymer Composite and Its Engineering Application. Polym. Plast. Technol. Eng. 2018, 1–17. DOI: 10.1080/03602559.2018.1434667.
  • Fera, M.; Fruggiero, F.; Lambiase, A.; Macchiaroli, R. State of the Art of Additive Manufacturing: Review for Tolerances, Mechanical Resistance and Production Costs. Cogent Eng. 2016, 3, 1261503.
  • Kumar, S.; Kruth, J. P. Composites by Rapid Prototyping Technology. Mater. Des. 2010, 31, 850–856.
  • Gu, D. D.; Meiners, W.; Wissenbach, K.; Poprawe, R. Laser Additive Manufacturing of Metallic Components: Materials, Processes and Mechanisms. Int. Mater. Rev. 2012, 57, 133–164.
  • Low, Z. X.; Chua, Y. T.; Ray, B. M.; Mattia, D.; Metcalfe, I. S.; Patterson, D. A. Perspective on 3D Printing of Separation Membranes and Comparison to Related Unconventional Fabrication Techniques. J. Memb. Sci. 2017, 523, 596–613.
  • Berry, E.; Brown, J. M.; Connell, M.; Craven, C. M.; Efford, N. D.; Radjenovic, A. Preliminary Experience with Medical Applications of Rapid Prototyping by Selective Laser Sintering. Med. Eng. Phys.. 1997, 19, 90–96.
  • Rengier, F.; Mehndiratta, A.; von Tengg-Kobligk, H.; Zechmann, C. M.; Unterhinninghofen, R.; Kauczor, H.-U.; Giesel, F. L. 3D Printing Based on Imaging Data: Review of Medical Applications. Int. J. Comput. Assist. Radiol. Surg. 2010, 5, 335–341.
  • Kruth, J. P.; Levy, G.; Klocke, F.; Childs, T. H. C. Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing. CIRP Ann. Manuf. Technol. 2007, 56, 730–759.
  • Wong, K. V.; Hernandez, A. A Review of Additive Manufacturing. ISRN Mech. Eng. 2012, 2012, 1–10.
  • Crump, S. S.; Apparatus and Method for Creating Three-Dimensional Objects. US Pat. 5,121,329, 15, 1992.
  • Das, S.; Hollister, S. J.; Flanagan, C.; Adewunmi, A.; Bark, K.; Chen, C.; Ramaswamy, K.; Rose, D.; Widjaja, E. Freeform Fabrication of Nylon‐6 Tissue Engineering Scaffolds. Rapid Prototyp. J. 2003, 9, 43–49.
  • Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The Upcoming 3d-Printing Revolution in Microfluidics. Lab Chip. 2016, 16, 1720–1742.
  • Jokić, S.; Novikov, P.; Maggs, S.; Sadan, D.; Jin, S.; Nan, C. Robotic Positioning Device for Three-Dimensional Printing. arXiv Prepr. arXiv 1406.3400. 2014, 1, 1–14.
  • Masood, S. H.; Song, W. Q. Development of New Metal/Polymer Materials for Rapid Tooling Using Fused Deposition Modelling. Mater. Des. 2004, 25, 587–594.
  • Bandyopadhyay, A.; Atisivan, R.; Kuhn, G.; Yeruva, S. Mechanical Properties of Interconnected Phase alumina–Al Composites. Solid Free. Fabr. Symp. 2000, 4, 24–31.
  • Gratson, G. M.; Direct Writing in Three Dimensions.Pdf. Materialstoday. 2004, 7, 32–39.
  • Pfister, A.; Landers, R.; Laib, A.; Hübner, U.; Schmelzeisen, R.; Mülhaupt, R. Biofunctional Rapid Prototyping for Tissue-Engineering Applications: 3D Bioplotting versus 3D Printing. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 624–638.
  • Ahn, S.; Montero, M.; Odell, D.; Roundy, S.; Wright, P. K. Anisotropic Material Properties of Fused Deposition Modeling ABS. Rapid Prototyp. J. 2002, 8, 248–257.
  • Prajapati, D.; Nandwana, S.; Aggarwal, V. Fused Deposition Modelling. Indian Inst. Technol. Kanpur. 2014, 10, 1–10.
  • Zein, I.; Hutmacher, D. W.; Tan, K. C.; Teoh, S. H. Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications. Biomaterials. 2002, 23, 1169–1185.
  • Lee, B. H.; Abdullah, J.; Khan, Z. A. Optimization of Rapid Prototyping Parameters for Production of Flexible ABS Object. J. Mater. Process. Technol. 2016, 169, 54–61.
  • Wang, J.; Cheng, Q.; Lin, L.; Jiang, L. Synergistic Toughening of Bioinspired Poly(Vinyl alcohol)–Clay–Nanofibrillar Cellulose Artificial Nacre. ACS Nano. 2014, 8, 2739–2745.
  • Kempin, W.; Franz, C.; Koster, L C.; Schneider, F.; Bogdahn, M.; Weitschies, W.; Seidlitz, A. Assessment of Different Polymers and Drug Loads for Fused Deposition Modeling of Drug Loaded Implants. Eur. J. Pharm. Biopharm. 2017, 115, 84–93.
  • Holländer, J.; Genina, N.; Jukarainen, H.; Khajeheian, M.; Rosling, A.; Mäkilä, E.; Sandler, N. Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery. J. Pharm. Sci. 2016, 105, 2665–2676.
  • Yadav, R., Goud, R.; Dutta, A.; Wang, X.; Naebe, M.; Kandasubramanian, B. Biomimicking of Hierarchal Molluscan Shell Structure via Layer by Layer 3D Printing. Ind. Eng. Chem. Res. 2018. DOI: 10.1021/acs.iecr.8b01738.
  • Peltola, S. M.; Melchels, F. P. W.; Grijpma, D. W.; Kellomäki, M. A Review of Rapid Prototyping Techniques for Tissue Engineering Purposes. Ann. Med. 2008, 40, 268–280.
  • Vaneetveld, G.; Clarinval, A. M.; Dormal, T.; Noben, J. C.; Lecomte-Beckers, J. Optimization of the Formulation and Post-Treatment of Stainless Steel for Rapid Manufacturing. J. Mater. Process. Technol. 2008, 196, 160–164.
  • Gupta, A.; Ogale, A. A. Dual Curing of Carbon Fiber Reinforced Photoresins for Rapid Prototyping. Polym. Compos. 2002, 23, 1162–1170.
  • Sahin, Y.; Preparation and Some Properties of SiC Particle Reinforced Aluminium Alloy Composites. Metallography. 2003, 24, 671–679.
  • Karalekas, D.; Antoniou, K. Composite Rapid Prototyping: Overcoming the Drawback of Poor Mechanical Properties. J. Mater. Process. Technol. 2004, 153–154, 526–530.
  • Cheah, C. M.; Fuh, J. Y. H.; Nee, A. Y. C.; Lu, L. Mechanical Characteristics of Fiber-Filled Photo-Polymer Used in Stereolithography. Rapid Prototyp. J. 1999, 5, 112–119.
  • Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A.; Samulski, E. T.; et al. Continuous Liquid Interface Production of 3D Objects. Science. 2015, 347, 1349–1352. DOI: 10.1126/science.aaa2397.
  • Barry, J. J. A.; Evseev, A. V.; Markov, M. A.; Upton, C. E.; Scotchford, C. A.; Popov, V. K.; Howdle, S. M. In Vitro Study of Hydroxyapatite-Based Photocurable Polymer Composites Prepared by Laser Stereolithography and Supercritical Fluid Extraction. Acta Biomater. 2008, 4, 1603–1610.
  • Kawata, S.; Sun, H. B.; Tanaka, T.; Takada, K. Finer Features for Functional Microdevices. Nature. 2001, 412, 697–698.
  • Tseng, P.; Murray, C.; Kim, D.; Di Carlo, D. Research Highlights: Printing the Future of Microfabrication. Lab Chip. 2014, 14, 1491.
  • Zhou, J. G.; Herscovici, D.; Chen, C. C. Parametric Process Optimization to Improve the Accuracy of Rapid Prototyped Stereolithography Parts. Int. J. Mach. Tools Manuf. 2000, 40, 363–379.
  • Olszewski, R.; Three-dimensional rapid prototyping models in cranio-maxillofacial surgery: systematic review and new clinical applications. Proceedings of the Belgian Royal Academies of Medicine 2, (2013).
  • Gibson, I.; Shi, D. Material Properties and Fabrication Parameters in Selective Laser Sintering Process. Rapid Prototyp. J. 1997, 3, 129–136.
  • Tan, K. H.; Chua, C. K.; Leong, K. F.; Cheah, C. M.; Cheang, P.; Abu Bakar, M. S.; Cha, S. W. Scaffold Development Using Selective Laser Sintering of Polyetheretherketone-Hydroxyapatite Biocomposite Blends. Biomaterials. 2003, 24, 3115–3123.
  • Shishkovsky, I. V.; Tarasova, E. Y.; Zhuravel’, L. V.; Petrov, A. L. The Synthesis of a Biocomposite Based on Nickel Titanium and Hydroxyapatite under Selective Laser Sintering Conditions. Tech. Phys. Lett. 2001, 27, 211–213.
  • Wiria, F. E.; Leong, K. F.; Chua, C. K.; Liu, Y. Poly-ε-caprolactone/hydroxyapatite for Tissue Engineering Scaffold Fabrication via Selective Laser Sintering. Acta Biomater. 2007, 3, 1–12.
  • Agarwala, M.; Bourell, D.; Beaman, J.; Marcus, H.; Barlow, J. Direct Selective Laser Sintering of Metals. Rapid Prototyp. J. 1995, 1, 26–36.
  • Fina, F.; Madla, C. M.; Goyanes, A.; Zhang, J.; Gaisford, S.; Basit, A. W. Fabricating 3D Printed Orally Disintegrating Printlets Using Selective Laser Sintering. Int. J. Pharm. 2018, 541, 101–107.
  • Fina, F.; Goyanes, A.; Madla, C. M.; Awad, A.; Trenfield, S. J.; Kuek, J. M.; Patel, P.; Gaisford, S.; Basit, A. W. 3D Printing of Drug-Loaded Gyroid Lattices Using Selective Laser Sintering. Int. J. Pharm. 2018, 547, 44–52.
  • Martin, G. D.; Hoath, S. D.; Hutchings, I. M. Inkjet Printing - the Physics of Manipulating Liquid Jets and Drops. J. Phys. Conf. Ser. 2008, 105, 012001.
  • Derby, B.; Inkjet Printing of Functional and Structural Materials: Fluid Property Requirements, Feature Stability, and Resolution. Annu. Rev. Mater. Res. 2010, 40, 395–414.
  • Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C. 3D Printed Microfluidic Devices: Enablers and Barriers. Lab Chip. 2016, 16, 1993–2013.
  • Mei, J.; Formulation and Processing of Conductive Inks for Inkjet Printing of Electrical Components. PhD Thesis, University of Pittsburgh, Pittsburgh, 2004. http://d-scholarship.pitt.edu/9948/
  • Chang, J.; Liu, Y.; Huang, B. Effects of Dwell Time of Excitation Waveform on Meniscus Movements for a Tubular Piezoelectric Print-Head: Experiments and Model. J. Micromech. Microeng. 2017, 27, 075023.
  • Foros, J.; Woltersdorf, G.; Heinrich, B.; Brataas, A. Scattering of Spin Current Injected in Pd(001). J. Appl. Phys. 2005, 97, 95–98.
  • Xu, T.; Jin, J.; Gregory, C.; Hickman, J. J.; Boland, T. Inkjet Printing of Viable Mammalian Cells. Biomaterials. 2005, 26, 93–99.
  • Vaezi, M.; Seitz, H.; Yang, S. A Review on 3D Micro-Additive Manufacturing Technologies. Int. J. Adv. Manuf. Technol. 2013, 67, 1721–1754.
  • Shirazi, S. F. S., Gharehkhani, S.; Mehrali, M.; Yarmand, H.;  Metselaar, H. S. C.; Adib Kadri, N.; Osman, N. A. A. A Review on Powder-Based Additive Manufacturing for Tissue Engineering: Selective Laser Sintering and Inkjet 3D Printing. Sci. Technol. Adv. Mater. 2015, 16, 033502.
  • Yadav, R.; Naebe, M.; Wang, X.; Kandasubramanian, B. Review on 3D Prototyping of Damage Tolerant Interdigitating Brick Arrays of Nacre. Ind. Eng. Chem. Res. 2017, 56, 10516–10525.
  • Castro, N. J.; Patel, R.; Zhang, L. G. Design of a Novel 3D Printed Bioactive Nanocomposite Scaffold for Improved Osteochondral Regeneration. Cell. Mol. Bioeng. 2015, 8, 416–432.
  • Sabet, S. M.; Keshavarz, R.; Ohadi, A. Sound Isolation Properties of Polycarbonate/Clay and Polycarbonate/Silica Nanocomposites. Iran. Polym. J. 2018, 27, 57–66.
  • Leigh, S. J.; Bradley, R. J.; Purssell, C. P.; Billson, D. R.; Hutchins, D. A. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors. PLoS One. 2012, 7, 1–6.
  • Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3d Printing of Polymer Matrix Composites: A Review and Prospective. Composites Part B: Engineering 2017, 110, 442–458. DOI: 10.1016/j.compositesb.2016.11.034.
  • Czyzewski, J.; Burzyński, P.; Gaweł, K.; Meisner, J. Rapid Prototyping of Electrically Conductive Components Using 3D Printing Technology. J. Mater. Process. Technol. 2009, 209, 5281–5285.
  • Azhari, A.; Toyserkani, E.; Villain, C. Additive Manufactu-ring of Graphene-Hydroxyapatite Nanocomposite Structures. Int. J. Appl. Ceram. Technol. 2015, 12, 8–17.
  • Spie, P. of. Front Matter: Volume 8243. 8243, 824301. 2012.
  • Chee, W. K.; Lim, H. N.; Huang, N. M.; Harrison, I. Nanocomposites of Graphene/Polymers: A Review. RSC Adv. 2015, 5, 68014–68051.
  • Wang, G.; Sun, X.; Lu, F.; Sun, H.; Yu, M.; Jiang, W.; Liu, C.; Lian, J. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors. Small. 2012, 8, 452–459.
  • Chi, K.; Zhang, Z.; Xi, J.; Huang, Y.; Xiao, F.; Wang, S.; Liu, Y. Freestanding Graphene Paper Supported Three-Dimensional Porous Graphene-Polyaniline Nanocomposite Synthesized by Inkjet Printing and in Flexible All-Solid-State Supercapacitor. ACS Appl. Mater. Interfaces. 2014, 6, 16312–16319.
  • Elliott, A. M.; Ivanova, O. S.; Williams, C. B.; Campbell, T. A. Inkjet Printing of Quantum Dots in Photopolymer for Use in Additive Manufacturing of Nanocomposites. Adv. Eng. Mater. 2013, 15, 903–907.
  • Guo, S. Z.; Gosselin, F.; Guerin, N.; Lanouette, A. M.; Heuzey, M. C.; Therriault, D. Solvent-Cast Three-Dimensional Printing of Multifunctional Microsystems. Small. 2013, 9, 4118–4122.
  • Farahani, R. D.; Chizari, K.; Therriault, D. Three-Dimensional Printing of Freeform Helical Microstructures: A Review. Nanoscale. 2014, 6, 10470.
  • Postiglione, G.; Natale, G.; Griffini, G.; Levi, M.; Turri, S. Conductive 3D Microstructures by Direct 3D Printing of Polymer/Carbon Nanotube Nanocomposites via Liquid Deposition Modeling. Compos. Part A Appl. Sci. Manuf. 2015, 76, 110–114.
  • Guo, S. Z.; Gosselin, F.; Guerin, N.; Lanouette, A. M. Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces. Adv. Mater. 2011, 23, 1335–1340.
  • Vatani, M.; Engeberg, E. D.; Choi, J. W. Detection of the Position, Direction and Speed of Sliding Contact with a Multi-Layer Compliant Tactile Sensor Fabricated Using Direct-Print Technology. Smart Mater. Struct. 2014, 23, 095008.
  • Farahani, R. D.; Dalir, H.; Aissa, B.; El Khakani, M. A.; Lévesque, M.; Therriault, D. Micro-Infiltration of Three-Dimensional Porous Networks with Carbon Nanotube-Based Nanocomposite for Material Design. Compos. Part A Appl. Sci. Manuf. 2011, 42, 1910–1919.
  • Compton, B. G.; Lewis, J. A. 3d-Printing of Lightweight Cellular Composites. Adv. Mater. 2014, 26, 5930–5935.
  • Ahn, B. Y.; Walker, S. B.; Slimmer, S. C.; Russo, A.; Gupta, A.; Kranz, S.; Duoss, E. B.; Malkowski, T. F.; Lewis, J. A. Planar and Three-Dimensional Printing of Conductive Inks. J. Vis. Exp. 2011, 1–8. DOI: 10.3791/3189.
  • Aïssa, B.; Nedil, M.; Habib, M. A.; Haddad, E.; Jamroz, W.; Therriault, D.; Coulibaly, Y.; Rosei, F. Fluidic Patch Antenna Based on Liquid Metal Alloy/Single-Wall Carbon-Nanotubes Operating at the S-Band Frequency. Appl. Phys. Lett. 2013, 103, 063101.
  • Leigh, S. J.; Purssell, C. P.; Billson, D. R.; Hutchins, D. A. Using a Magnetite/Thermoplastic Composite in 3D Printing of Direct Replacements for Commercially Available Flow Sensors. Smart Mater. Struct. 2014, 23, 095039.
  • Liu, K.; Zhang, C.; Sun, Y.; Zhang, G.; Shen, X.; Zou, F.; Zhang, H.; Wu, Z.; Wegener, E. C.; Taubert, C. J.; et al. A High-Performance Transition Metal Phosphide Alloy Catalyst for Oxygen Evolution Reaction. ACS Nano. 2017, 2018, 12, 158–167. DOI: 10.1021/acsnano.7b04646.
  • Lebel, L. L.; Aissa, B.; El Khakani, M. A.; Therriault, D. Preparation and Mechanical Characterization of Laser Ablated Single-Walled Carbon-Nanotubes/Polyurethane Nanocomposite Microbeams. Compos. Sci. Technol. 2010, 70, 518–524.
  • Farahani, R. D.; Dalir, H.; Le Borgne, V.; Gautier, L. A.; El Khakani, M. A.; Lévesque, M.; Therriault, D. Direct-Write Fabrication of Freestanding Nanocomposite Strain Sensors. Nanotechnology. 2012, 23, 085502.
  • Farahani, R. D.; Pahlavanpour, M.; Dalir, H.; Aissa, B.; Khakani, M. A. E.; Lévesque, M.; Therriault, D. Manufacturing Composite Beams Reinforced with Three-Dimensionally Patterned-Oriented Carbon Nanotubes through Microfluidic Infiltration. Mater. Des. 2012, 41, 214–225.
  • Christ, S.; Schnabel, M.; Vorndran, E.; Groll, J.; Gbureck, U. Fiber Reinforcement during 3D Printing. Mater. Lett. 2015, 139, 165–168.
  • Mironov, V.; Boland, T.; Trusk, T.; Forgacs, G.; Markwald, R. R. Organ Printing: Computer-Aided Jet-Based 3D Tissue Engineering. Trends Biotechnol. 2003, 21, 157–161.
  • Vozzi, G.; Flaim, C.; Ahluwalia, A.; Bhatia, S. Fabrication of PLGA Scaffolds Using Soft Lithography and Microsyringe Deposition. Biomaterials. 2003, 24, 2533–2540.
  • Hoque, M. E.; Hutmacher, D. W.; Feng, W.; Li, S.; Huang, M. H.; Vert, M.; Wong, Y. S. Fabrication Using a Rapid Prototyping System and in Vitro Characterization of PEG-PCL-PLA Scaffolds for Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2005, 16, 1595–1610.
  • Schantz, J. T.; Brandwood, A.; Hutmacher, D. W.; Khor, H. L.; Bittner, K. Osteogenic Differentiation of Mesenchymal Progenitor Cells in Computer Designed Fibrin-Polymer-Ceramic Scaffolds Manufactured by Fused Deposition Modeling. J. Mater. Sci. Mater. Med. 2005, 16, 807–819.
  • Hollister, S. J.; Porous Scaffold Design for Tissue Engineering. Nat. Mater. 2005, 4, 518–524.
  • Yeong, W. Y.; Sudarmadji, N.; Yu, H. Y.; Chua, C. K.; Leong, K. F.; Venkatraman, S. S.; Boey, Y. C. F.; Tan, L. P. Porous Polycaprolactone Scaffold for Cardiac Tissue Engineering Fabricated by Selective Laser Sintering. Acta Biomater. 2010, 6, 2028–2034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.