1,844
Views
47
CrossRef citations to date
0
Altmetric
Reviews

Vegetable oil-based epoxy resins and their composites with bio-based hardener: a short review

, , &
Pages 1311-1326 | Received 13 Jun 2018, Accepted 16 Dec 2018, Published online: 17 Jan 2019

References

  • Saurabh, T.; Patnaik, M.; Bhagt, S. L.; Renge, V. C. Epoxidation of Vegetable Oils : A Review. Int. J. Adv. Eng. Technol. 2011, 2(4), 491–501.
  • Takahashi, T.; Hirayama, K.; Teramoto, N.; Shibata, M. Biocomposites Composed of Epoxidized Soybean Oil Cured with Terpene-Based Acid Anhydride and Cellulose Fibers. J. Appl. Polym. Sci. 2008, 108, 1596–1602. DOI: 10.1002/(ISSN)1097-4628.
  • Sharma, V.; Kundu, P. P. Condensation Polymers from Natural Oils. Prog. Polym. Sci. 2008, 33, 1199–1215. DOI: 10.1016/j.progpolymsci.2008.07.004.
  • Puing, G. L. I. Biobased Thermosets from Vegetable Oils. Synthesis, Characterization, and Properties. Ph.D. Dissertation,University Rovira I Virgili, Tarragona, Spain, 2006.
  • Sharma, V.; Kundu, P. P. Ã. Addition Polymers from Natural Oils — A Review. Prog. Polym. Sci. 2006, 31, 983–1008. DOI: 10.1016/j.progpolymsci.2006.09.003.
  • Baroncini, E. A.; Yadav, S. K.; Palmese, G. R.; Stanzione, J. F., III. Recent Advances in Bio-Based Epoxy Resins and Bio-Based Epoxy Curing Agents. J. Appl. Polym. Sci. 2016, 133(45), 1–19.
  • Karak, N. Vegetable Oil-Based Polymers; Woodhead Publishing Limited: United States, 2012.
  • Mohanty, A. K.; Misra, M.; Drzal, L. T. Natural Fibers, Biopolymers, and Biocomposites; Taylor and Francis: New York, NY, 2005.
  • Stemmelen, M.; Pessel, F.; Lapinte, V.; Caillol, S.; Inge, E.; Euge, P. A Fully Biobased Epoxy Resin from Vegetable Oils : From the Synthesis of the Precursors by Thiol-Ene Reaction to the Study of the Final Material. ‎J. Polym. Sci. Part A Polym. Chem. 2011;49:2434–2444.
  • Alsagayar, Z. S.; Rahmat, A. R.; Arsad, A.; Fakhari, A.; Binti Wan Tajulruddin, W. N. Mechanical Properties of Epoxidized Palm Oil/Epoxy Resin Blend. Appl. Mech. Mater. 2014, 695(July), 655–658. DOI: 10.4028/www.scientific.net/AMM.695.655.
  • Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. Biobased Thermosetting Epoxy: Present and Future. Chem. Rev. 2014, 114(2), 1082–1115. DOI: 10.1021/cr3001274.
  • Bledzki, A. K.; Urbaniak, M.; Boettcher, A.; Berger, C.; Pilawka, R. Bio-Based Epoxies and Composites for Technical Applications. Key Eng. Mater. 2013, 559, 1–6. DOI: 10.4028/www.scientific.net/KEM.559.1.
  • Roudsari, G. M.; Mohanty, A. K.; Misra, M. Study of the Curing Kinetics of Epoxy Resins with Biobased Hardener and Epoxidized Soybean Oil. ACS Sustain. Chem. Eng. 2014, 2(9), 2111–2116. DOI: 10.1021/sc500176z.
  • Liu, Y.; Wang, J.; Xu, S. Synthesis and Curing Kinetics of Cardanol-Based Curing Agents for Epoxy Resin by in Situ Depolymerization of Paraformaldehyde. J. Polym. Sci. Part A Polym. Chem. 2014, 52, 472–480. DOI: 10.1002/pola.27018.
  • Gupta, A. P.; Ahmad, S.; Dev, A. Development of Novel Bio-Based Soybean Oil Epoxy Resins as a Function of Hardener Stoichiometry. Polym. Plast. Technol. Eng. 2010, 49(7), 657–661. DOI: 10.1080/03602551003681796.
  • Miyagawa, H.; Mohanty, A. K.; Burgueño, R.; Drzal, L. T.; Misra, M. Development of Biobased Unsaturated Polyester Containing Functionalized Linseed Oil. Ind. Eng. Chem. Res. 2006, 45(3), 1014–1018. DOI: 10.1021/ie050902e.
  • Supanchaiyamat, N. Bio-Based Thermoset Composites from Epoxidised Linseed Oil. Ph.D. Dissertation, University of York, York, England, 2012.
  • Paluvai, N. R.; Mohanty, S.; Nayak, S. K. Epoxidized Castor Oil Toughened Diglycidyl Ether of Bisphenol A Epoxy Nanocomposites: Structure and Property Relationships. Polym. Adv. Technol. 2015, (January). DOI: 10.1002/pat.3584.
  • Manthey, N. W. Development of Hemp Oil Based Bioresins for Biocomposites. Ph.D. Dissertation, University of Southern Queensland, Queensland, Australia, 2013.
  • Mazumdar, S. K. Composites Manufacturing Material, Product, and Process Engineering; CRC Press: London, 2002.
  • Jaillet, F.; Desroches, M.; Auvergne, R.; Boutevin, B.; Caillol, S. New Biobased Carboxylic Acid Hardeners for Epoxy Resins. Eur. J. Lipid Sci. Technol. 2013, 115(6), 698–708. DOI: 10.1002/ejlt.v115.6.
  • Auvergne, R.; Desroches, M.; Clerc, S.; Carlotti, S.; Caillol, S.; Boutevin, B. New Biobased Epoxy Hardeners: Thiol-Ene Addition on Oligobutadiene. React. Funct. Polym. 2012, 72(6), 393–401. DOI: 10.1016/j.reactfunctpolym.2012.03.001.
  • Meshram, P. D.; Puri, R. G.; Patil, H. V. Epoxidation of Wild Safflower (Carthamus Oxyacantha) Oil with Peroxy Acid in Presence of Strongly Acidic Cation Exchange Resin IR-122 as Catalyst. Int. J. ChemTech Res. 2011, 3(3), 1152–1163.
  • Li, Y.; Fu, L.; Lai, S.; Cai, X.; Yang, L. Synthesis and Characterization of Cast Resin Based on Different Saturation Epoxidized Soybean Oil. Eur. J. Lipid Sci. Technol. 2010, 112(4), 511–516. DOI: 10.1002/ejlt.v112:4.
  • Pin, J.; Sbirrazzuoli, N.; Mija, A. From Epoxidized Linseed Oil to Bioresin : An Overall Approach of Epoxy/Anhydride Cross-Linking. ChemSusChem. 2015, 8, 1232–1243. DOI: 10.1002/cssc.v8.7.
  • Kadam, A.; Pawar, M.; Yemul, O.; Thamke, V.; Kodam, K. Biodegradable Biobased Epoxy Resin from Karanja Oil. Polymer (Guildf). 2015, 72, 82–92. DOI: 10.1016/j.polymer.2015.07.002.
  • Tayde, S.; Thorat, P. Effect of Epoxidized Cottonseed Oil on Epoxy Resin and Its Thermal Behavior. Int. J. Chemtech Res. 2015, 7(1), 260–268.
  • Mungroo, R.; Pradhan, N. C.; Goud, V. V.; Dalai, A. K. Epoxidation of Canola Oil with Hydrogen Peroxide Catalyzed by Acidic Ion Exchange Resin. J. Am. Oil Chem. Soc. 2008;(85):887–896. DOI: 10.1007/s11746-008-1277-z
  • Omonov, T. S.; Curtis, J. M. Biobased Epoxy Resin from Canola Oil. J. Appl. Polym. Sci. 2014. DOI: 10.1002/app.40142.
  • Stemmelen, M.; Pessel, F.; Lapinte, V.; Caillol, S.; Habas, J. P.; Robin, J. J. A Fully Biobased Epoxy Resin from Vegetable Oils: From the Synthesis of the Precursors by Thiol-Ene Reaction to the Study of the Final Material. J. Polym. Sci. Part A Polym. Chem. 2011, 49(11), 2434–2444. DOI: 10.1002/pola.24674.
  • Ding, C.; Shuttleworth, P. S.; Makin, S.; Clark, J.; Matharu, A. S. New Insights into the Curing of Epoxidized Linseed Oil with Dicarboxylic Acids. Green Chem. 2015, 17, 4000–4008. DOI: 10.1039/C5GC00912J.
  • Stemmelen, M.; Lapinte, V.; Habas, J.; Robin, J. Plant Oil-Based Epoxy Resins from Fatty Diamines and Epoxidized Vegetable Oil. Eur. Polym. J. 2015, 68, 536–545. DOI: 10.1016/j.eurpolymj.2015.03.062.
  • Shibata, M.; Nakai, K. Preparation and Properties of Biocomposites Composed of Bio-Based Epoxy Resin, Tannic Acid, and Microfibrillated Cellulose. J. Polym. Sci. Part B Polym. Phys. 2010, 48, 425–433. DOI: 10.1002/polb.21903.
  • Ma, S.; Webster, D. C. Naturally Occurring Acids as Cross-Linkers to Yield VOC-Free, High-Performance, Fully Bio-Based, Degradable Thermosets. Macromolecules. 2015, 48(19), 7127–7137. DOI: 10.1021/acs.macromol.5b01923.
  • Darroman, E.; Bonnot, L.; Auvergne, R.; Boutevin, B.; Caillol, S. New Aromatic Amine Based on Cardanol Giving New Biobased Epoxy Networks with Cardanol. Eur. J. Lipid Sci. Technol. 2015, 117(2), 178–189. DOI: 10.1002/ejlt.v117.2.
  • Gupta, A. P.; Ahmad, S.; Dev, A. Modification of Novel Bio-Based Resin-Epoxidized Soybean Oil by Conventional Epoxy Resin. Polym. Eng. Sci. 2011. DOI: 10.1002/pen.21791.
  • Tan, S. G.; Chow, W. S. Thermal Properties of Anhydride-Cured Bio-Based Epoxy Blends. J. Therm. Anal. Calorim. 2010, 101, 1051–1058. DOI: 10.1007/s10973-010-0751-7.
  • Tan, S. G.; Chow, W. S. Thermal Properties, Fracture Toughness and Water Absorption of Epoxy-Palm Oil Blends Thermal Properties, Fracture Toughness and Water Absorption of Epoxy-Palm Oil Blends. Polym. Plast. Technol. Eng. 2010, 49, 900–907. DOI: 10.1080/03602551003682042.
  • Tan, S. G.; Chow, W. S. Thermal Properties, Curing Characteristics and Water Absorption of Soybean Oil-Based Thermoset. Express Polym. Lett. 2011, 5(6), 480–492. DOI: 10.3144/expresspolymlett.2011.47.
  • Wang, R.; Schuman, T. P. Vegetable Oil-Derived Epoxy Monomers and Polymer Blends: A Comparative Study with Review. Express Polym. Lett. 2012, 7(3), 272–292. DOI: 10.3144/expresspolymlett.2013.25.
  • Ding, C.; Matharu, A. S. Recent Developments on Biobased Curing Agents: A Review of Their Preparation and Use. ACS Sustain. Chem. Eng. 2014, 2(10), 2217–2236. DOI: 10.1021/sc500478f.
  • Lu, J.; Wool, R. P. Additive Toughening Effects on New Bio-Based Thermosetting Resins from Plant Oils. Compos. Sci. Technol. 2008, 68(3–4), 1025–1033. DOI: 10.1016/j.compscitech.2007.07.009.
  • Liu, X.; Xin, W.; Zhang, J. Rosin-Based Acid Anhydrides as Alternatives to Petrochemical Curing Agents. Green Chem. 2009, 11(7), 1018. DOI: 10.1039/b903955d.
  • Wang, H.; Wang, H.; Zhou, G. Synthesis of Rosin-Based Imidoamine-Type Curing Agents and Curing Behavior with Epoxy Resin. Polym. Int. 2011, 60(4), 557–563. DOI: 10.1002/pi.v60.4.
  • Chang, R.; Qin, J.; Gao, J. Fully Biobased Epoxy from Isosorbide Diglycidyl Ether Cured by Biobased Curing Agents with Enhanced Properties. J. Polym. Res. 2014, 21(7), 501. DOI: 10.1007/s10965-014-0501-9.
  • Singha, A. S.; Kaith, B. S.; Khanna, A. J. Synthesis and Characterization of Cannabis Indica Fiber Reinforced Composites. Bioresources. 2011, 6(1986), 2101–2117.
  • Torres, F. G.; Cubillas, M. L. Study of the Interfacial Properties of Natural Fibre Reinforced Polyethylene. Polym. Test. 2005 Sep;24(6):694–698. DOI: 10.1016/j.polymertesting.2005.05.004
  • Shibata, M.; Teramoto, N.; Makino, K. Preparation and Properties of Biocomposites Composed of Epoxidized Soybean Oil, Tannic Acid, and Microfibrillated Cellulose. J. Appl. Polym. Sci. 2011, 120, 273–278. DOI: 10.1002/app.v120.1.
  • Tan, S. G.; Chow, W. S. Thermal Properties, Fracture Toughness and Water Absorption of Epoxy-Palm Oil Blends. Polym. Plast. Technol. Eng. 2010, 49(9), 900–907. DOI: 10.1080/03602551003682042.
  • Dinda, S.; Patwardhan, A. V.; Goud, V. V.; Pradhan, N. C. Epoxidation of Cottonseed Oil by Aqueous Hydrogen Peroxide Catalysed by Liquid Inorganic Acids. Bioresour. Technol. 2008, 99, 3737–3744. DOI: 10.1016/j.biortech.2007.07.015.
  • Mustapha, S. N. H.; Rahmat, A. R.; Arsad, A. Bio-Based Thermoset Nanocomposite Derived from Vegetable Oil: A Short Review. Rev. Chem. Eng. 2014, 30(2), 167–182. DOI: 10.1515/revce-2013-0010.
  • Naidir, F.; Yunus, R.; Idaty, T.; Ghazi, M.; Ramli, I. Synthesis of Epoxidized Palm Oil-Based Trimethylolpropane Ester. Pertanika J. Sci. Technol. 2012, 20(2), 331–337.
  • Fong, M. N. F.; Salimon, J. Epoxidation of Palm Kernel Oil Fatty Acids. J. Sci. Technol. 2011, 4(2), 87–98.
  • Derawi, D.; Salimon, J. Optimization on Epoxidation of Palm Olein by Using Performic Acid. E-Journal Chem. 2010, 7(4), 1440–1448. DOI: 10.1155/2010/384948.
  • Adekunle, K. F. A Review of Vegetable Oil-Based Polymers : Synthesis and Applications. Open J. Polym. Chem. 2015, 5(August), 34–40. DOI: 10.4236/ojpchem.2015.53004.
  • Campanella, A.; Fontanini, C.; Baltanás, M. A. High Yield Epoxidation of Fatty Acid Methyl Esters with Performic Acid Generated in Situ. Chem. Eng. J. 2008, 144(3), 466–475. DOI: 10.1016/j.cej.2008.07.016.
  • Tan, S. G.; Chow, W. S. Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends : A Review Biobased Epoxidized Vegetable Oils and Its Greener Epoxy Blends : A Review. Polymer-Pla. 2010, 49, 1581–1590.
  • Derawi, D.; Salimon, J.; Ahmed, W. A. Preparation of Epoxidized Palm Olein as Renewable Material by Using Peroxy Acids. Malaysian J. Anal. Sci. 2014, 18(3), 584–591.
  • Abdullah, B. M.; Salimon, J. Epoxidation of Vegetable Oils and Fatty Acids: Catalysts, Methods and Advantages. J. Appl. Sci. 2010, 10(15), 1545–1553.
  • Cai, C., Dai, H., Chen, R., Su, C., Xu, X., Zhang, S., Yang, L. Studies on the Kinetics of in Situ Epoxidation of Vegetable Oils. Eur. J. Lipid Sci. Technol. 2008, 110, 341–346. DOI: 10.1002/ejlt.200700104.
  • Caylı, G.; Kusefoglu, S. Polymerization of Acrylated Epoxidized Soybean Oil with Phenol Furfural Resins via Repeated Forward and Retro Diels – Alder Reactions. J. Appl. Polym. Sci. 2011, 120, 1707–1712. DOI: 10.1002/app.33303.
  • Sen, S.; Caylı, G. Synthesis of Bio-Based Polymeric Nanocomposites from Acrylated Epoxidized Soybean Oil and Montmorillonite Clay in the Presence of a Bio-Based Intercalant. Polym. Int. 2010, 59, 1122–1129.
  • Salih, A. M.; Bin Ahmad, M.; Ibrahim, N. A. Synthesis of Radiation Curable Palm Oil–Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations. Molecules. 2015, 20, 14191–14211. DOI: 10.3390/molecules200814191.
  • Fu, L.; Yang, L.; Dai, C.; Zhao, C.; Ma, L. Thermal and Mechanical Properties of Acrylated Expoxidized-Soybean Oil-Based Thermosets. J. Appl. Polym. Sci. 2010, 117, 2220–2225. DOI: 10.1002/app.v117:4.
  • Saithai, P.; Lecomte, J.; Dubreucq, E.; Tanrattanakul, V. Effects of Different Epoxidation Methods of Soybean Oil on the Characteristics of Acrylated Epoxidized Soybean Oil-Co-Poly (Methyl Methacrylate) Copolymer. Express Polym. Lett. 2013, 7(11), 910–924. DOI: 10.3144/expresspolymlett.2013.89.
  • Paluvai, N. R.; Mohanty, S.; Nayak, S. K. Fabrication and Evaluation of Acrylated Epoxidized Castor Oil-Toughened Diglycidyl Ether of Bisphenol A Nanocomposites. Can. J. Chem. Eng. 2015, 93(September), 2107–2116. DOI: 10.1002/cjce.22320.
  • Habib, F.; Bajpai, M. Synthesis and Characterization of Acrylated Epoxidized Soybean Oil for Uv Cured Coatings. Chem. Chem. Technol. 2011, 5(3), 318–326.
  • Scala, J. L.; Wool, R. P. Rheology of Chemically Modified Triglycerides. J. Appl. Polym. Sci. 2005, 95(3), 774–783. DOI: 10.1002/(ISSN)1097-4628.
  • Samarth, N. B.; Mahanwar, P. A. Modified Vegetable Oil Based Additives as a Future Polymeric Material — Review. Open J. Org. Polym. Mater. 2015, 5, 1–22. DOI: 10.4236/ojopm.2015.51001.
  • Can, E.; Ku, S.; Wool, R. P. Rigid, Thermosetting Liquid Molding Resins from Renewable Resources. I. Synthesis and Polymerization of Soy Oil Monoglyceride Maleates. J. Appl. Polym. Sci. 2001, 81, 69–77. DOI: 10.1002/app.1414.
  • Khot, S. N., Lascala, J. J., Can, E., Morye, S.S., Williams, G. I., Palmese, G. R., Kusefoglu, S. H., Wool, R. P. Development and Application of Triglyceride-Based Polymers and Composites. J. Appl. Polym. Sci. 2001, 82(3), 703–723.
  • Bachtiar, D.; Sapuan, S. M.; Hamdan, M. M. Flexural Properties of Alkaline Treated Sugar Palm Fibre. Int. J. Automot. Mech. Eng. 2010, 1(June), 79–90. DOI: 10.15282/ijame.1.2010.7.0007.
  • Santiagoo, R.; Ismail, H.; Hussin, K. Mechanical Properties, Water Absorption, and Swelling Behaviour of Rice Husk Powder Filled Polypropylene/Recycled Acrylonitrile Butadiene Rubber (Pp/Nbr/Rhp) Biocomposites Using Silane as a Coupling Agent. BioResources. 2011, 6(4), 3714–3726.
  • Vilaseca, F.; Valadez-Gonzalez, A.; Herrera-Franco, P. J.; Pèlach, M. A.; López, J. P.; Mutjé, P. Biocomposites from Abaca Strands and Polypropylene. Part I: Evaluation of the Tensile Properties. Bioresour. Technol. 2010 Jan;101(1):387–395. DOI: 10.1016/j.biortech.2009.07.066
  • Wambua, P.; Ivens, J.; Verpoest, I. Natural Fibres: Can They Replace Glass in Fibre Reinforced Plastics? Compos. Sci. Technol. 2003 Jul;63(9):1259–1264. DOI: 10.1016/S0266-3538(03)00096-4
  • Ilomäki, K. Adhesion between Natural Fibers and Thermosets. Master Dissertation, Tampere University of Technology, Tampere, Finland, 2011.
  • Saha, P.; Manna, S.; Chowdhury, S. R.; Sen, R.; Roy, D.; Adhikari, B. Enhancement of Tensile Strength of Lignocellulosic Jute Fibers by Alkali-Steam Treatment. Bioresour. Technol. 2010 May;101(9):3182–3187. DOI: 10.1016/j.biortech.2009.12.010
  • Ismail, H.; Othman, N.; Komethi, M. Curing Characteristics and Mechanical Properties of Rattan-Powder-Filled Natural Rubber Composites as a Function of Filler Loading and Silane Coupling Agent. J. Appl. Polym. Sci. 2012, 123, 2805–2811. DOI: 10.1002/app.v123.5.
  • Xie, Y.; Hill, C. A. S.; Xiao, Z.; Militz, H.; Mai, C. Composites : Part A Silane Coupling Agents Used for Natural Fiber/Polymer Composites : A Review. Compos. A. 2010, 41(7), 806–819. DOI: 10.1016/j.compositesa.2010.03.005.
  • Kabir, M. M.; Wang, H.; Lau, K. T.; Cardona, F. Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview. Compos. Part B Eng. 2012 Oct;43(7):2883–2892. DOI: 10.1016/j.compositesb.2012.04.053
  • Li, X.; Tabil, Æ. L. G.; Panigrahi, Æ. S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites : A Review. J. Polym. Env. 2007, 15, 25–33. DOI: 10.1007/s10924-006-0042-3.
  • Bledzki, A. K.; Gassan, J. Composites Reinforced with Cellulose Based Fibres. Prog. Polym. Sci. 1999, 24, 221–274. DOI: 10.1016/S0079-6700(98)00018-5.
  • O’Donnell, A.; Dweib, M. A.; Wool, R. P. Natural Fiber Composites with Plant Oil-Based Resin. Compos. Sci. Technol. 2004, 64(9), 1135–1145. DOI: 10.1016/j.compscitech.2003.09.024.
  • Abdullah, M. A. A. Preparation and Characterization of Natural Rubber, Polyethylene and Natural Rubber/Polyethylene-Clay Nanocomposites. Ph.D. Dissertation, Universiti Putra Malaysia, Serdang, Malaysia, 2007.
  • Dong, Y.; Umer, R.; Lau, A. K.-T. Fillers and Reinforcements for Advanced Nanocomposites; Woodhead Publishing: United Kingdom, UK, 2015.
  • Hafiz, A. A. A. Synthesis and Characterization of EVA-Cloisite Clay Nanocomposites. Master Dissertation, The American University in Cairo, Cairo, Egypt, 2013.
  • Esnaashari, C.; Khorasani, S. N.; Entezam, M.; Khalili, S. Mechanical and Water Absorption Properties of Sawdust-Low Density Polyethylene Nanocomposite. J. Appl. Polym. Sci. 2013 Jan;127(2):1295–1300. DOI: 10.1002/app.v127.2
  • Lakshmi, M. S.; Narmadha, B.; Reddy, B. S. R. Enhanced Thermal Stability and Structural Characteristics of Different MMT-Clay/epoxy- Nanocomposite Materials. Polym. Degrad. Stab. 2008, 93, 201–213. DOI: 10.1016/j.polymdegradstab.2007.10.005.
  • Lu, Y.; Larock, R. C. Novel Biobased Nanocomposites from Soybean Oil and Functionalized Organoclay. Biomacromolecules. 2006, 2692–2700. DOI: 10.1021/bm060458e
  • Paluvai, N. R.; Mohanty, S.; Nayak, S. K. Effect of Cloisite 30B Clay and Sisal Fiber on Dynamic Mechanical and Fracture Behavior of Unsaturated Polyester Toughened Epoxy Network. Polymer Composites. 2016, 2833–2846. DOI: 10.1002/pc.23480.
  • Piscitelli, F.; Scamardella, A. M.; Romeo, V.; Lavorgna, M.; Barra, G.; Amendola, E. Epoxy Composites Based on Amino-Silylated MMT : The Role of Interfaces and Clay Morphology. J. Appl. Polym. Sci. 2012, 124, 616–628. DOI: 10.1002/app.35015.
  • Feng, W.; Ait-Kadi, A.; Reidl, B. Polymerization Compounding : Epoxy-Montmorillonite Nanocomposites. Polym. Eng. Sci. 2002, 42(9), 1827–1835. DOI: 10.1002/pen.11075.
  • Basara, C.; Yilmazer, U.; Bayram, G. Synthesis and Characterization of Epoxy Based Nanocomposites. J. Appl. Polym. Sci. 2005. DOI: 10.1002/app.22242.
  • Ratna, D.; Simon, G. P. Mechanical Characterization and Morphology of Carboxyl Randomized Poly(2-Ethyl Hexyl Acrylate) Liquid Rubber Toughened Epoxy Resins. Polymer (Guildf). 2001, 42(18), 7739–7747. DOI: 10.1016/S0032-3861(01)00278-6.
  • Faruk, O.; Bledzki, A. K.; Fink, H.-P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012 Nov;37(11):1552–1596. DOI: 10.1016/j.progpolymsci.2012.04.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.