400
Views
15
CrossRef citations to date
0
Altmetric
Articles

Electrochemical sensor-based gold nanoparticle/poly(aniline-co-o-toluidine)/graphene oxide nanocomposite modified electrode for hexavalent chromium detection: a real test sample

ORCID Icon, &
Pages 1423-1436 | Received 19 Feb 2018, Accepted 16 Dec 2018, Published online: 17 Jan 2019

References

  • Aliyu, S.; Azah, N. O. R.; Hajian, R. Linear Sweep Anodic Stripping Voltammetry : Determination of Chromium (VI) Using Synthesized Gold Nanoparticles Modified Screen-Printed Electrode. J. Chem. Sci. 2015, 27, 1075–1081.
  • Hirata, S.; Honda, K.; Shikino, O.; Maekawa, N. Determination of Chromium (III) and Total Chromium in Seawater by On-Line Column Preconcentration Inductively Coupled Plasma Mass Spectrometry. Spectrochemica Acta Part B At. Spectrosc. 2000, 55, 1089–1099.
  • Tsogas, G. Z.; Giokas, D. L.; Vlessidis, A. G.; Evmiridis, N. P. A Single-Reagent Method for the Speciation of Chromium in Natural Waters by Flame Atomic Absorption Spectrometry Based on Vesicular Liquid Coacervate Extraction. Spectrochemica Acta Part B At. Spectrosc. 2004, 59, 957–965.
  • Kaneko, M.; Kurihara, M.; Nakano, S.; Kawashima, T. Flow-Injection Determination of Chromium (III) by Its Catalysis on the Oxidative Coupling of 3-Methyl-2-Benzothiazolinone Hydrazone with N-ethyl-N-(2-hydroxy-3-sulfopropyl) −3-Methoxyaniline. Anal. Chem. Acta. 2002, 474, 167–176. DOI: 10.1016/S0003-2670(02)01005-X.
  • Pereira, J. S. F.; Moraes, D. P.; Antes, F. G.; Diehl, L. O.; Santos, M. F. P.; Guimarães, R. C. L.; Fonseca, T. C. O.; Dressler, V. L.; Flores, É. M. M. Determination of Metals and Metalloids in Light and Heavy Crude Oil by ICP-MS after Digestion by Microwave-Induced Combustion. Microchemical J. 2010, 96, 4–11. DOI: 10.1016/j.microc.2009.12.016.
  • Dajas, F.; Rivera, F.; Blasina, F.; Arredondo, F.; Echeverry, C.; Lafon, L.; Morquio, A.; Heizen, H.; Culture, C. Protection and in Vivo Neuroprotective Capacity of Flavonoids. Nuerotoxicity Res. 2003, 5, 425–432.
  • Izadyar, A.; Al-Amoody, F.; Arachchige, D. R. Ion Transfer Stripping Voltammetry to Detect Nanomolar Concentrations of Cr (VI) in Drinking Water. JEAC. 2016, 782, 43–49.
  • Mirmohseni, A.; Oladegaragoze, A. L. I. Detection and Determination of Cr (VI) in Solution Using Polyaniline Modified Quartz Crystal Electrode. J. Appl. Polym. Sci. 2002, 85, 2772–2780. DOI: 10.1002/app.10746.
  • Guo, S.; Wang, E. Synthesis and Electrochemical Applications of Gold Nanoparticles. Anal. Chem. Acta. 2007, 598, 181–192.
  • Zeng, S.; Chen, H.; Cai, F.; Kang, Y.; Chen, M.; Li, Q. Electrochemical Fabrication of Carbon Nanotube/Polyaniline Hydrogel Film for All-Solid-State Flexible Supercapacitor with High Areal Capacitance. J. Mater. Chem. A. 2015, 3, 23864–23870. DOI: 10.1039/C5TA05937B.
  • Sohn, K.; Kim, F.; Pradel, K. C.; Wu, J.; Peng, Y.; Zhou, F.; Huang, J. Construction of Evolutionary Tree for Nanoparticles. Acs Nano. 2009, 3, 2191–2198. DOI: 10.1021/nn900784f.
  • Ouyang, R.; Bragg, S. A.; Chambers, J. Q.; Xue, Z. Analytica Chimica Acta Flower-Like Self-Assembly of Gold Nanoparticles for Highly Sensitive Electrochemical Detection of Chromium (VI). Anal. Chim. Acta. 2012, 722(1–7). DOI: 10.1016/j.aca.2012.02.017.
  • Daniel, M.; Astruc, D. Gold Nanoparticles : Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346.
  • Kohli, P.; Harrell, C. C.; Cao, Z.; Gasparac, R.; Tan, W.; Martin, C. R. DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. Science. 2004, 305, 984–986. DOI: 10.1126/science.1100024.
  • Cheng, W.; Dong, S.; Wang, E. Colloid Chemical Approach to Nanoelectrode Ensembles with Highly Controllable Active Area Fraction. Anal. Chem. 2002, 74, 3599–3604. DOI: 10.1021/ac025661o.
  • Jia, J.; Wang, B.; Wu, A.; Cheng, G.; Li, Z.; Dong, S. A Method to Construct A Third-Generation Horseradish Peroxidase Biosensor : Self-Assembling Gold Nanoparticles to Three-Dimensional Sol - Gel Network. Anal. Chem. 2002, 74, 2217–2223. DOI: 10.1021/ac011116w.
  • Cao, X.; Ye, Y.; Liu, S. Gold Nanoparticle-Based Signal Amplification for Biosensing. Anal. Biochem. 2011, 417, 1–16. DOI: 10.1016/j.ab.2011.05.027.
  • Pingarron, J. M.; Yanez-Sedeno, P.; Gonzalez-Cortes, A. Gold Nanoparticle-Based Electrochemical Biosensors. Electrochim. Acta. 2008, 53, 5848–5866. DOI: 10.1016/j.electacta.2008.03.005.
  • Kumar, S.; Pal, A.; Kundu, S.; Nath, S.; Pal, T. Fluorescence Quenching of 1-Methylaminopyrene near Gold Nanoparticles: Size Regime Dependence of the Small Metallic Particles. Chem. Phys. Lett. 2004, 395, 366–372. DOI: 10.1016/j.cplett.2004.08.016.
  • Santhosh, C.; Saranya, M.; Ramachandran, R.; Felix, S.; Velmurugan, V.; Grace, A. N. Graphene/Gold Nanocomposites-Based Thin Films as an Enhanced Sensing Platform for Voltammetric Detection of Cr (VI) Ions. J. Nanotechnol. 2014, 304526, 1–7.
  • Kumar, D.;. Synthesis and Characterization of Poly(Aniline-Co-O-Toluidine) Copolymer. Synth. Met. 2000, 114, 369–372. DOI: 10.1016/S0379-6779(00)00270-8.
  • Roncoli, J.;. Conjugated Poly(Thiophenes): Synthesis, Functionalization, and Applications. Chem. Rev. 1992, 92, 711–738.
  • Toshima, N.; Hara, S. Direct Synthesis of Conducting Polymers from Simple Monomers. Prog. Polym. Sci. 1995, 20, 155–183. DOI: 10.1016/0079-6700(94)00029-2.
  • Wang, J. X.;. Mechanism of Mediation of the Electrochemical Oxidation of K4Fe(CN)6 at poly-[tris(3-{ω-[4-(2,2′-bipyridyl)]alkyl}-thiophene)iron(II)]-film Modified Electrodes in Aqueous Solutions. Electrochim. Acta. 1996, 41, 2563–2569. DOI: 10.1016/0013-4686(96)00070-9.
  • Wang, Y. D.; Rubner, M. F. Stability Studies of the Electrical Conductivity of Various Poly(3-Alkylthiophenes). Synth. Met. 1990, 39, 153–175. DOI: 10.1016/0379-6779(90)90180-S.
  • Pinheiro, I. F.; Ferreira, F. V.; Souza, D. H. S.; Gouveia, R. F.; Lona, L. M. F.; Morales, A. R.; Mei, L. H. I. Mechanical, Rheological and Degradation Properties of PBAT Nanocomposites Reinforced by Functionalized Cellulose Nanocrystals. Eur. Polym. J. 2017, 97, 356–365. DOI: 10.1016/j.eurpolymj.2017.10.026.
  • Cividanes, L. S.; Brunelli, D. D.; Antunes, E. F.; Corat, E. J.; Sakane, K. K.; Thim, G. P. Cure Study of Epoxy Resin Reinforced with Multiwalled Carbon Nanotubes by Raman and Luminescence Spectroscopy, J. Appl. Polym. Sci. 2013, 127, 544–553. DOI: 10.1002/app.37815.
  • Liu, N.; Wang, X.; Xu, W.; Hu, H.; Liang, J.; Qiu, J. Microwave-Assisted Synthesis of MoS2/graphene Nanocomposites for Efficient Hydrodesulfurization. Fuel. 2014, 119, 163–169. DOI: 10.1016/j.fuel.2013.11.045.
  • Ryu, J.; Han, M. Improvement of the Mechanical and Electrical Properties of Polyamide 6 Nanocomposites by Non-Covalent Functionalization of Multi-Walled Carbon Nanotubes. Compos. Sci. Technol. 2014, 102, 169–175. DOI: 10.1016/j.compscitech.2014.07.022.
  • Yang, A.; Li, J.; Zhang, C.; Zhang, W.; Ma, N. One-Step Amine Modification of Graphene Oxide to Get a Green Trifunctional Metal-Free Catalyst. Appl. Surf. Sci. 2015, 346, 443–450. DOI: 10.1016/j.apsusc.2015.04.033.
  • Abdollahi, R.; Taghizadeh, M. T.; Savani, S. Thermal and Mechanical Properties of Graphene Oxide Nanocomposite Hydrogel Based on Poly (Acrylic Acid) Grafted onto Amylose. Polym. Deg. Stab. 2018, 147, 151–158. DOI: 10.1016/j.polymdegradstab.2017.11.022.
  • Ferreira, F. V.; Brito, F. S.; Franceschi, W.; Simonetti, E. A. N.; Cividanes, L. S.; Chipar, M.; Lozano, K. Functionalized Graphene Oxide as Reinforcement in Epoxy Based Nanocomposites. Surf. Interfaces. 2018, 10, 100–109. DOI: 10.1016/j.surfin.2017.12.004.
  • Khan, A.; Khan, A. A. P.; Asiri, A. M.; Gupta, V.; Rathore, M. Preparation, Properties and Applications of Organic–Inorganic Hybrid Nanocomposite Poly(Aniline-Co-O-Toluidine) Tungstomolybdate. J. Mol. Liq. 2016, 216, 646–653. DOI: 10.1016/j.molliq.2016.01.078.
  • Sivakumar, K.; Kumar, V. S.; Shim, -J.-J.; Haldorai, Y. Poly(Aniline-Co-O-Toluidine) Encapsulated Zinc Oxide Nanocomposite: Preparation, Characterization, and Photocatalytic Reduction of Cr(VI). Synth. React. Inorg., Met.-Org., Nano-Met. Chem. 2015, 45, 660–666. DOI: 10.1080/15533174.2014.965112.
  • Mahudeswaran, A.; Manoharan, D.; Chandrasekaran, J.; Vivekanandan, J.; Vijayanand, P. S. CSA Doped Poly(Aniline-Co-O-Toluidine) and Dispersed Zinc Oxide Nanoparticles: A Promising Material for Photovoltaics. Mater. Res. 2015, 18, 482–488. DOI: 10.1590/1516-1439.301614.
  • Hatamzadeh, M.; Jaymand, M. Synthesis of Conductive Polyaniline-Modified Polymers via a Combination of Nitroxide-Mediated Polymerization and ‘Click Chemistry. RSC Adv. 2014, 4, 28653–28663. DOI: 10.1039/C4RA00864B.
  • Ogawa, K.; Yui, T.; Okuyama, K. Three D Structures of Chitosan. Int. J. Biol. Macromol. 2004, 34, 1–8. DOI: 10.1016/j.ijbiomac.2003.11.002.
  • Kumar, S.; Dutta, J.; Dutta, P. K. Preparation and Characterization of N-Heterocyclic Chitosan Derivative Based Gels for Biomedical Applications. Int. J. Biol. Macromol. 2009, 45, 330–337. DOI: 10.1016/j.ijbiomac.2009.08.002.
  • Aly, K. I.; Hussein, M. A. Synthesis, Characterization and Corrosion Inhibitive Properties of New Thiazole Based Polyamides Containing Diarylidenecyclo-hexanone Moiety. Chin. J. Polym. Sci. 2015, 33, 1–13. DOI: 10.1007/s10118-015-1569-3.
  • Hussein, M. A.;. Eco-Friendly Polythiophene(Keto-Amine)S Based on Cyclopentanone Moiety for Environmental Remediation. J Polym. Environ. 2018, 26, 1194–1205. DOI: 10.1007/s10924-017-1023-4.
  • Hussein, M. A.; El-Shishtawy, R. M.; Obaid, A. Y. The Impact of Graphene Nano-Plates on the Behavior of Novel Conducting Polyazomethine Nanocomposites. RSC Adv. 2017, 7, 9998–10008. DOI: 10.1039/C6RA28756E.
  • Hussein, M. A.; Abu-Zied, B. M.; Asiri, A. M. The Role of Mixed Graphene/Carbon Nanotubes on the Coating Performance of G/CNTs/Epoxy Resin Nanocomposites. Int. J. Electrochem. Sci. 2016, 11, 7644–7659.
  • Jin, W.; Wu, G.; Chen, A. Sensitive and Selective Electrochemical Detection of chromium(VI) Based on Gold Nanoparticle-Decorated Titania Nanotube Arrays. Analyst. 2014, 139, 235–241. DOI: 10.1039/C3AN01614E.
  • Online, V. A.; Ravishankar, T. N.; Muralikrishna, S.; Nagaraju, G.; Ramakrishnappa, T. Analytical Methods Electrochemical Detection and Photochemical Detoxi Fi Cation of Hexavalent Chromium (Cr (VI)) by Ag Doped TiO2 Nanoparticles. Anal. Methods. 2015, 7, 3493–3499. DOI: 10.1039/C5AY00096C.
  • Jena, B. K.; Raj, C. R. Talanta Highly Sensitive and Selective Electrochemical Detection of Sub-Ppb Level Chromium (VI) Using Nano-Sized Gold Particle. Talanta. 2008, 76, 161–165. DOI: 10.1016/j.talanta.2008.05.023.
  • Sadeghi, S.; Garmroodi, A. A Highly Sensitive and Selective Electrochemical Sensor for Determination of Cr (VI) in the Presence of Cr (III) Using Modi Fi Ed Multi-Walled Carbon Nanotubes/Quercetin Screen-Printed Electrode. Mater. Sci. Eng. C. 2013, 33, 4972–4977. DOI: 10.1016/j.msec.2013.08.020.
  • Welch, C. M.; Nekrassova, O.; Compton, R. G. Reduction of Hexavalent Chromium at Solid Electrodes in Acidic Media : Reaction Mechanism and Analytical Applications. Talanta. 2005, 65, 74–80.
  • Jin, W.; Yan, K. Recent Advances in Electrochemical Detection of Toxic Cr(VI). RSC Adv. 2015, 5, 37440–37450. DOI: 10.1039/C4RA14244F.
  • Salimi, A.; Pourbahram, B.; Mansouri-Majd, S.; Hallaj, R. Manganese Oxide Nano Flakes/Multi-Walled Carbon Nanotubes/Chitosan Nanoco-mposite Modi Fied Glassy Carbon Electrode as a Novel Electrochemical Sensor for Chromium (III) Detection. Electrochim. Acta. 2015, 156, 207–215. DOI: 10.1016/j.electacta.2014.12.146.
  • Metters, J. P.; Kadara, R. O.; Banks, C. E. Electroanalytical Sensing of chromium(III) and (VI) Utilising Gold Screen Printed Macro Electrodes. Analyst. 2012, 137, 896–902. DOI: 10.1039/c2an16054d.
  • Dong, C.; Wu, G.; Wang, Z.; Ren, W.; Zhang, Y.; Shen, Z.; Li, T.; Wu, A. Selective Colorimetric Detection of Cr(III) and Cr(VI) Using Gallic Acid Capped Gold Nanoparticles. Dalton Trans. 2016, 45, 8340–8346.
  • Richtera, L.; Nguyen, H. V.; Hynek, D.; Kudr, J.; Adam, V. Electrochemical Speciation Analysis for Simultaneous Determination of Cr(III) and Cr(VI) Using an Activated Glassy Carbon Electrode. Alalyst. 2016, 141, 5577–5585.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.