233
Views
8
CrossRef citations to date
0
Altmetric
Articles

Enhanced conductivity of bacterial cellulose films reinforced with NH4I-doped graphene oxide

, , &
Pages 1585-1595 | Received 07 Sep 2018, Accepted 16 Dec 2018, Published online: 17 Jan 2019

References

  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845. DOI: 10.1038/nmat2297.
  • Zhai, Y.; Dou, Y.; Zhao, D.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon Materials for Chemical Capacitive Energy Storage. Adv. Mater. 2011, 23, 4828–4850. DOI: 10.1002/adma.201103379.
  • Gu, W.; Yushin, G. Review of Nanostructured Carbon Materials for Electrochemical Capacitor Applications: Advantages and Limitations of Activated Carbon, Carbide-Derived Carbon, Zeolite-Templated Carbon, Carbon Aerogels, Carbon Nanotubes, Onion-Like Carbon, and Graphene. Wiley Interdiscip. Rev. Energy Environ. 2014, 3, 424–473. DOI: 10.1002/wene.102.
  • Das, T. K.; Prusty, S. Review on Conducting Polymers and Their Applications. Polym. Plast. Technol. Eng. 2012, 51, 1487–1500. DOI: 10.1080/03602559.2012.710697.
  • Yue, L.; Xie, Y.; Zheng, Y.; He, W.; Guo, S.; Sun, Y.; Zhang, T.; Liu, S. Sulfonated Bacterial Cellulose/Polyaniline Composite Membrane for Use as Gel Polymer Electrolyte. Compos. Sci. Technol. 2017, 145, 122–131. DOI: 10.1016/j.compscitech.2017.04.002.
  • Alves, R.; Sentanin, F.; Sabadini, R. C.; Pawlicka, A.; Silva, M. M. Green Polymer Electrolytes of Chitosan Doped with Erbium Triflate. J. Non-Cryst. Solids. 2018, 482, 183–191. DOI: 10.1016/j.jnoncrysol.2017.12.038.
  • Bella, F.; Mobarak, N. N.; Jumaah, F. N.; Ahmad, A. From Seaweeds to Biopolymeric Electrolytes for Third Generation Solar Cells: An Intriguing Approach. Electrochim. Acta. 2015, 151, 306–311. DOI: 10.1016/j.electacta.2014.11.058.
  • Foresti, M.; Vázquez, A.; Boury, B. Applications of Bacterial Cellulose as Precursor of Carbon and Composites with Metal Oxide, Metal Sulfide and Metal Nanoparticles: A Review of Recent Advances. Carbohydr. Polym. 2017, 157, 447–467. DOI: 10.1016/j.carbpol.2016.11.031.
  • Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose: Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. DOI: 10.1002/(ISSN)1521-3773.
  • Ververis, C.; Georghiou, K.; Christodoulakis, N.; Santas, P.; Santas, R. Fiber Dimensions, Lignin and Cellulose Content of Various Plant Materials and Their Suitability for Paper Production. Ind. Crops. Prod. 2004, 19, 245–254. DOI: 10.1016/j.indcrop.2003.10.006.
  • Gelin, K.; Bodin, A.; Gatenholm, P.; Mihranyan, A.; Edwards, K.; Strømme, M. Characterization of Water in Bacterial Cellulose Using Dielectric Spectroscopy and Electron Microscopy. Polymer. 2007, 48, 7623–7631. DOI: 10.1016/j.polymer.2007.10.039.
  • Ma, L.; Liu, R.; Niu, H.; Zhao, M.; Huang, Y. Flexible and Freestanding Electrode Based on Polypyrrole/Graphene/Bacterial Cellulose Paper for Supercapacitor. Compos. Sci. Technol. 2016, 137, 87–93. DOI: 10.1016/j.compscitech.2016.10.027.
  • Okiyama, A.; Motoki, M.; Yamanaka, S. Bacterial Cellulose Iv. Application to Processed Foods. Food Hydrocoll. 1993, 6, 503–511. DOI: 10.1016/S0268-005X(09)80074-X.
  • Fontana, J.; De Souza, A.; Fontana, C.; Torriani, I.; Moreschi, J.; Gallotti, B.; De Souza, S.; Narcisco, G.; Bichara, J.; Farah, L. Acetobacter Cellulose Pellicle as a Temporary Skin Substitute. Appl. Biochem. Biotechnol. 1990, 24, 253–264. DOI: 10.1007/BF02920250.
  • Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D.; Brittberg, M.; Gatenholm, P. Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of Cartilage. Biomaterials. 2005, 26, 419–431. DOI: 10.1016/j.biomaterials.2004.02.049.
  • Yamanaka, S.; Watanabe, K.; Kitamura, N.; Iguchi, M.; Mitsuhashi, S.; Nishi, Y.; Uryu, M. The Structure and Mechanical Properties of Sheets Prepared from Bacterial Cellulose. J. Mater. Sci. 1989, 24, 3141–3145. DOI: 10.1007/BF01139032.
  • El-Saied, H.; Basta, A. H.; Gobran, R. H. Research Progress in Friendly Environmental Technology for the Production of Cellulose Products (Bacterial Cellulose and Its Application). Polym. Plast. Technol. Eng. 2004, 43, 797–820. DOI: 10.1081/PPT-120038065.
  • Chen, X.; Yuan, F.; Zhang, H.; Huang, Y.; Yang, J.; Sun, D. Recent Approaches and Future Prospects of Bacterial Cellulose- Based Electroconductive Materials. J. Mater. Sci. 2016, 51, 5573–5588. DOI: 10.1007/s10853-016-9899-2.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Muntha, S. T.; Kausar, A.; Siddiq, M. A Review Featuring Fabrication, Properties, and Application of Polymeric Mixed Matrix Membrane Reinforced with Different Fillers. Polym. Plast. Technol. Eng. 2017, 56, 2043–2064. DOI: 10.1080/03602559.2017.1298801.
  • Shah, R.; Kausar, A.; Muhammad, B.; Shah, S. Progression from Graphene and Graphene Oxide to High Performance Polymer-Based Nanocomposite: A Review. Polym. Plast. Technol. Eng. 2015, 54, 173–183. DOI: 10.1080/03602559.2014.955202.
  • Shao, W.; Wang, S.; Liu, H.; Wu, J.; Zhang, R.; Min, H.; Huang, M. Preparation of Bacterial Cellulose/Graphene Nanosheets Composite Films with Enhanced Mechanical Performances. Carbohydr. Polym. 2016, 138, 166–171. DOI: 10.1016/j.carbpol.2015.11.033.
  • Sadasivuni, K. K.; Kafy, A.; Zhai, L.; Ko, H.-U.; Mun, S.; Kim, J. Transparent and Flexible Cellulose Nanocrystal/Reduced Graphene Oxide Film for Proximity Sensing. Small. 2015, 11, 994–1002. DOI: 10.1002/smll.v11.8.
  • Iguchi, M.; Yamanaka, S.; Budhiono, A. Bacterial Cellulose: A Masterpiece of Nature’s Arts. J. Mater. Sci. 2000, 35, 261–270. DOI: 10.1023/A:1004775229149.
  • Nakagaito, A.; Iwamoto, S.; Yano, H. Bacterial Cellulose: The Ultimate Nano-Scalar Cellulose Morphology for the Production of High-Strength Composites. Appl. Phys. A. 2005, 80, 93–97. DOI: 10.1007/s00339-004-2932-3.
  • Feng, Y.; Zhang, X.; Shen, Y.; Yoshino, K.; Feng, W. A Mechanically Strong, Flexible and Conductive Film Based on Bacterial Cellulose/Graphene Nanocomposite. Carbohydr. Polym. 2012, 87, 644–649. DOI: 10.1016/j.carbpol.2011.08.075.
  • Yang, X. N.; Xue, D. D.; Li, J. Y.; Liu, M.; Jia, S. R.; Chu, L. Q.; Wahid, F.; Zhang, Y. M.; Zhong, C. Improvement of Antimicrobial Activity of Graphene Oxide/Bacterial Cellulose Nanocomposites through the Electrostatic Modification. Carbohydr. Polym. 2016, 136, 1152–1160. DOI: 10.1016/j.carbpol.2015.10.020.
  • Watanabe, K.; Tabuchi, M.; Morinaga, Y.; Yoshinaga, F. Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture. Cellulose. 1998, 5, 187–200. DOI: 10.1023/A:1009272904582.
  • Gea, S.; Torres, F.; Troncoso, O.; Reynolds, C.; Vilasecca, F.; Iguchi, M.; Peijs, T. Biocomposites Based on Bacterial Cellulose and Apple and Radish Pulp. Int. Polym. Process. 2007, 22, 497–501. DOI: 10.3139/217.2059.
  • Krenchel, H.;. Fibre Reinforcement; Theoretical and Practical Investigations of the Elasticity and Strength of Fibre-Reinforced Materials. Copenhagen: Akademisk Forlag, 1964.
  • Liu, L. P.; Yang, X. N.; Ye, L.; Xue, D. D.; Liu, M.; Jia, S. R.; Hou, Y.; Chu, L. Q.; Zhong, C. Preparation and Characterization of a Photocatalytic Antibacterial Material: Graphene oxide/TiO2/bacterial Cellulose Nanocomposite. Carbohydr. Polym. 2017, 174, 1078–1086. DOI: 10.1016/j.carbpol.2017.07.042.
  • Ma, L.; Liu, R.; Liu, L.; Wang, F.; Niu, H.; Huang, Y. Facile Synthesis of Ni (Oh) 2/Graphene/Bacterial Cellulose Paper for Large Areal Mass, Mechanically Tough and Flexible Supercapacitor Electrodes. J. Power Sources. 2016, 335, 76–83. DOI: 10.1016/j.jpowsour.2016.10.006.
  • Chandra, S.; Hashmi, S.; Prasad, G. Studies on Ammonuim Perchlorate Doped Polyethylene Oxide Polymer Electrolyte. Solid State Ionics. 1990, 40, 651–654. DOI: 10.1016/0167-2738(90)90090-E.
  • Rudhziah, S.; Ahmad, A.; Ahmad, I.; Mohamed, N. Biopolymer Electrolytes Based on Blend of Kappa-Carrageenan and Cellulose Derivatives for Potential Application in Dye Sensitized Solar Cell. Electrochim. Acta. 2015, 175, 162–168. DOI: 10.1016/j.electacta.2015.02.153.
  • Ccorahua, R.; Troncoso, O. P.; Rodriguez, S.; Lopez, D.; Torres, F. G. Hydrazine Treatment Improves Conductivity of Bacterial Cellulose/Graphene Nanocomposites Obtained by a Novel Processing Method. Carbohydr. Polym. 2017, 171, 68–76. DOI: 10.1016/j.carbpol.2017.05.005.
  • Nandgaonkar, A. G.; Wang, Q.; Fu, K.; Krause, W. E.; Wei, Q.; Gorga, R.; Lucia, L. A. A One-Pot Biosynthesis of Reduced Graphene Oxide (Rgo)/Bacterial Cellulose (Bc) Nanocomposites. Green Chem. 2014, 16, 3195–3201. DOI: 10.1039/C4GC00264D.
  • Si, H.; Luo, H.; Xiong, G.; Yang, Z.; Raman, S. R.; Guo, R.; Wan, Y. One-Step in Situ Biosynthesis of Graphene Oxide–Bacterial Cellulose Nanocomposite Hydrogels. Macromol. Rapid Commun. 2014, 35, 1706–1711.
  • Sanchis, M.; Carsí, M.; Gómez, C.; Culebras, M.; Gonzales, K.; Torres, F. Monitoring Molecular Dynamics of Bacterial Cellulose Composites Reinforced with Graphene Oxide by Carboxymethyl Cellulose Addition. Carbohydr. Polym. 2017, 157, 353–360. DOI: 10.1016/j.carbpol.2016.11.031.
  • Ege, D.; Kamali, A. R.; Boccaccini, A. R. Graphene Oxide/Polymer-Based Biomaterials. Adv. Eng. Mater. 2017, 19, 1700627. DOI: 10.1002/adem.v19.12.
  • Wu, X.; Lian, M. Highly Flexible Solid-State Supercapacitor Based on Graphene/Polypyrrole Hydrogel. J. Power Sources. 2017, 362, 184–191. DOI: 10.1016/j.jpowsour.2017.07.042.
  • Oh, S. Y.; Yoo, D. I.; Shin, Y.; Seo, G. Ftir Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide. Carbohydr. Res. 2005, 340, 417–428. DOI: 10.1016/j.carres.2004.11.027.
  • Kačuráková, M.; Smith, A. C.; Gidley, M. J.; Wilson, R. H. Molecular Interactions in Bacterial Cellulose Composites Studied by 1D FT-IR and Dynamic 2D FT-IR Spectroscopy. Carbohydr. Res. 2002, 337, 1145–1153.
  • Shezad, O.; Khan, S.; Khan, T.; Park, J. K. Physicochemical and Mechanical Characterization of Bacterial Cellulose Produced with an Excellent Productivity in Static Conditions Using a Simple Fed-Batch Cultivation Strategy. Carbohydr. Polym. 2010, 82, 173–180. DOI: 10.1016/j.carbpol.2010.04.052.
  • Barud, H. O.; Barud, H. D. S.; Cavicchioli, M.; Do Amaral, T. S.; de Oliveira Junior, O. B.; Santos, D. M.; de Oliveira, P. F. Preparation and Characterization of a Bacterial Cellulose/Silk Fibroin Sponge Scaffold for Tissue Regeneration. Carbohydr. Polym. 2015, 128, 41–51. DOI: 10.1016/j.carbpol.2015.04.007.
  • Ramesh, S.; Arof, A. Ionic Conductivity Studies of Plasticized Poly (Vinyl Chloride) Polymer Electrolytes. Mater. Sci. Eng. B. 2001, 85, 11–15. DOI: 10.1016/S0921-5107(01)00555-4.
  • Macedo, P.; Moynihan, C.; Bose, R. Role of Ionic Diffusion in Polarization in Vitreous Ionic Conductors. Phys. Chem. Glasses. 1972, 13, 171–179.
  • Dias, A.; Moreira, R. Chemical, Mechanical and Dielectric Properties after Sintering of Hydrothermal Nickel–Zinc Ferrites. Mater. Lett. 1999, 39, 69–76. DOI: 10.1016/S0167-577X(98)00219-5.
  • Baskaran, N.; Govindaraj, G.; Narayanasamy, A. Ac Conductivity and Relaxation Processes in Silver Selenochromate Glass. Solid State Ionics. 1997, 98, 217–227. DOI: 10.1016/S0167-2738(97)00110-0.
  • Dong, L.; Yang, J.; Chhowalla, M.; Loh, K. P. Synthesis and Reduction of Large Sized Graphene Oxide Sheets. Chem. Soc. Rev. 2017, 46, 7306–7316. DOI: 10.1039/C7CS00485K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.