513
Views
12
CrossRef citations to date
0
Altmetric
Articles

The synthesis and incorporation of a star-shaped bio-based modifier in the acrylic acid based superabsorbent: a strategy to enhance the absorbency under load

, , , &
Pages 1678-1690 | Received 17 Oct 2018, Accepted 16 Dec 2018, Published online: 17 Jan 2019

References

  • Zohuriaan-Mehr, M. J.; Kabiri, K. Superabsorbent Polymer Materials: A Review. Iran. Polym. J. 2008, 17(6), 451–477.
  • Ha, J.; Kim, M.; Lee, W.; Lee, H.; Han, C.; Koh, W. G.; Ryu, D. Y. Direct Measurement of Crosslinked Surface Layer in Superabsorbent Poly (Acrylic Acid). Mater. Lett. 2018, 228, 33–36. DOI: 10.1016/j.matlet.2018.05.079.
  • Agnihotri, S.; Singhal, R. Effect of Sodium Humate on the Swelling Characteristics and Agricultural Application of Superabsorbent Hydrogels of Poly (Acrylic Acid/Sodium Alginate/Sodium Humate). J. Polym. Mater. 2017, 34(4), 663–680.
  • Shahi, S.; Zohuriaan-Mehr, M. J.; Omidian, H. Antibacterial Superabsorbing Hydrogels with High Saline-Swelling Properties without Gel Blockage: Toward Ideal Superabsorbents for Hygienic Applications. J. Bioact. Compat. Polym. 2017, 32(2), 128–145. DOI: 10.1177/0883911516658782.
  • Zhang, S.-X.; Chai, X.-S.; Jiang, R. Accurate Determination of Residual Acrylic Acid in Superabsorbent Polymer of Hygiene Products by Headspace Gas Chromatography. J. Chromatogr. A. 2017, 1485, 20–23. DOI: 10.1016/j.chroma.2017.01.023.
  • Thombare, N.; Mishra, S.; Siddiqui, M.; Jha, U.; Singh, D.; Mahajan, G. R. Design and Development of Guar Gum Based Novel, Superabsorbent and Moisture Retaining Hydrogels for Agricultural Applications. Carbohydr. Polym. 2018, 185(1), 169–178. DOI: 10.1016/j.carbpol.2018.01.018.
  • Peyravi, M.; Selakjani, P. P.; Khalili, S. Nanoengineering Superabsorbent Materials: Agricultural Applications. Nanotechnology 2017; 99–115. DOI: 10.1007/978-981-10-4573-8_6.
  • Haseeb, M. T.; Hussain, M. A.; Bashir, S.; Ashraf, M. U.; Ahmad, N. Evaluation of Superabsorbent Linseed-Polysaccharides as a Novel Stimuli-Responsive Oral Sustained Release Drug Delivery System. Drug Dev. Ind. Pharm. 2017, 43(3), 409–420. DOI: 10.1080/03639045.2016.1257017.
  • Jeong, D.; Joo, S.-W.; Hu, Y.; Shinde, V. V.; Cho, E.; Jung, S. Carboxymethyl Cellulose-Based Superabsorbent Hydrogels Containing Carboxymehtyl β-cyclodextrin for Enhanced Mechanical Strength and Effective Drug Delivery. Eur. Polym. J. 2018, 105(1), 17–25. DOI: 10.1016/j.eurpolymj.2018.05.023.
  • Capanema, N. S.; Mansur, A. A.; de Jesus, A. C.; Carvalho, S. M.; de Oliveira, L. C.; Mansur, H. S. Superabsorbent Crosslinked Carboxymethyl cellulose-PEG Hydrogels for Potential Wound Dressing Applications. Int. J. Biol. Macromol. 2018, 106(1), 1218–1234. DOI: 10.1016/j.ijbiomac.2017.08.124.
  • Sharma, S.; Dua, A.; Malik, A. Biocompatible Stimuli Responsive Superabsorbent Polymer for Controlled Release of GHK-Cu Peptide for Wound Dressing Application. J. Polym. Res. 2017, 24(7), 104. DOI: 10.1007/s10965-017-1254-z.
  • Dai, H.; Huang, H. Enhanced Swelling and Responsive Properties of Pineapple Peel Carboxymethyl Cellulose-G-Poly (Acrylic Acid-Co-Acrylamide) Superabsorbent Hydrogel by the Introduction of Carclazyte. J. Agric. Food. Chem. 2017, 65(3), 565–574. DOI: 10.1021/acs.jafc.6b04899.
  • Fekete, T.; Borsa, J.; Takács, E.; Wojnárovits, L. Synthesis and Characterization of Superabsorbent Hydrogels Based on Hydroxyethylcellulose and Acrylic Acid. Carbohydr. Polym.. 2017, 166, 300–308. DOI: 10.1016/j.carbpol.2017.02.108.
  • Song, W.; Xin, J.; Zhang, J. One-Pot Synthesis of Soy Protein (SP)-Poly (Acrylic acid)(PAA) Superabsorbent Hydrogels via Facile Preparation of SP Macromonomer. Ind. Crops Prod. 2017, 100(1), 117–125. DOI: 10.1016/j.indcrop.2017.02.018.
  • Mudiyanselage, T. K.; Neckers, D. C. Highly Absorbing Superabsorbent Polymer. J. Polym. Sci., Part A: Polym. Chem. 2008, 46(4), 1357–1364. DOI: 10.1002/pola.22476.
  • Moini, N.; Kabiri, K.; Zohuriaan‐Mehr, M. J.; Omidian, H.; Esmaeili, N. Fine Tuning of SAP Properties via Epoxy‐Silane Surface Modification. Polym. Adv. Technol. 2017, 28(9), 1132–1147. DOI: 10.1002/pat.4006.
  • Moini, N.; Kabiri, K. Effective Parameters in Surface Cross-Linking of Acrylic-Based Water Absorbent Polymer Particles Using Bisphenol A Diethylene Glycidyl Ether and Cycloaliphatic Diepoxide. Iran. Polym. J. 2015, 24(11), 977–987. DOI: 10.1007/s13726-015-0386-4.
  • Ramazani-Harandi, M.; Zohuriaan-Mehr, M.; Yousefi, A.; Ershad-Langroudi, A.; Kabiri, K. Rheological Determination of the Swollen Gel Strength of Superabsorbent Polymer Hydrogels. Polym. Test. 2006, 25(4), 470–474. DOI: 10.1016/j.polymertesting.2006.01.011.
  • Peak, C. W.; Nagar, S.; Watts, R. D.; Schmidt, G. Robust and Degradable Hydrogels from Poly (Ethylene Glycol) and Semi-Interpenetrating Collagen. Macromolecules. 2014, 47(18), 6408–6417. DOI: 10.1021/ma500972y.
  • Kheirabadi, M.; Bagheri, R.; Kabiri, K. Structure, Swelling and Mechanical Behavior of a Cationic full-IPN Hydrogel Reinforced with Modified Nanoclay. Iran. Polym. J. 2015, 24(5), 379–388. DOI: 10.1007/s13726-015-0330-7.
  • Christenson, E. M.; Anseth, K. S.; van Den Beucken, J. J.; Chan, C. K.; Ercan, B.; Jansen, J. A.; Laurencin, C. T.; Li, W. J.; Murugan, R.; Nair, L. S. Nanobiomaterial Applications in Orthopedics. J. Orthopaed. Res. 2007, 25(1), 11–22. DOI: 10.1002/jor.20305.
  • Marandi, G. B.; Hariri, S.; Mahdavinia, G. R. Effect of Hydrophobic Monomer on the Synthesis and Swelling Behaviour of a Collagen‐Graft‐Poly [(Acrylic Acid)‐Co‐(Sodium Acrylate)] Hydrogel. Polym. Int. 2009, 58(2), 227–235. DOI: 10.1002/pi.2520.
  • Rodrigues, F. H.; Spagnol, C.; Pereira, A. G.; Martins, A. F.; Fajardo, A. R.; Rubira, A. F.; Muniz, E. C. Superabsorbent Hydrogel Composites with a Focus on Hydrogels Containing Nanofibers or Nanowhiskers of Cellulose and Chitin. J. Appl. Polym. Sci.. 2014, 131(2). DOI: 10.1002/app.39725.
  • Li, M.-C.; Ge, X.; Cho, U. R. Mechanical Performance, Water Absorption Behavior and Biodegradability of Poly (Methyl Methacrylate)-Modified starch/SBR Biocomposites. Macromol. Res. 2013, 21(7), 793–800. DOI: 10.1007/s13233-013-1088-4.
  • Zhao, X. Multi-Scale Multi-Mechanism Design of Tough Hydrogels: Building Dissipation into Stretchy Networks. Soft Matter. 2014, 10(5), 672–687. DOI: 10.1039/C3SM52272E.
  • Pásztor, S.; Iván, B.; Kali, G. Extreme Difference of Polarities in a Single Material: Poly (Acrylic Acid)‐Based Amphiphilic Conetworks with Polyisobutylene Cross‐Linker. J. Polym. Sci. Part A: Polym. Chem. 2017, 55(11), 1818–1821. DOI: 10.1002/pola.28569.
  • Limparyoon, N.; Seetapan, N.; Kiatkamjornwong, S. Acrylamide/2-Acrylamido-2-Methylpropane Sulfonic Acid and Associated Sodium Salt Superabsorbent Copolymer Nanocomposites with Mica as Fire Retardants. Polym. Degrad. Stab. 2011, 96(6), 1054–1063. DOI: 10.1016/j.polymdegradstab.2011.03.012.
  • Wu, J.; Wei, Y.; Lin, J.; Lin, S. Study on Starch-Graft-Acrylamide/Mineral Powder Superabsorbent Composite. Polymer. 2003, 44(21), 6513–6520. DOI: 10.1016/S0032-3861(03)00728-6.
  • Zhang, J.; Wang, A. Study on Superabsorbent Composites. IX: Synthesis, Characterization and Swelling Behaviors of Polyacrylamide/Clay Composites Based on Various Clays. React. Funct. Polym. 2007, 67(8), 737–745. DOI: 10.1016/j.reactfunctpolym.2007.05.001.
  • Fu, L.-H.; Cao, T.-H.; Lei, Z.-W.; Chen, H.; Shi, Y.-G.; Xu, C. Superabsorbent Nanocomposite Based on Methyl Acrylic Acid-Modified Bentonite and Sodium Polyacrylate: Fabrication, Structure and Water Uptake. Mater. Des. 2016, 94, 322–329. DOI: 10.1016/j.matdes.2016.01.014.
  • Wang, J.; Wang, W.; Zheng, Y.; Wang, A. Effects of Modified Vermiculite on the Synthesis and Swelling Behaviors of Hydroxyethyl Cellulose-G-Poly (Acrylic Acid)/Vermiculite Superabsorbent Nanocomposites. J. Polym. Res. 2011, 18(3), 401–408. DOI: 10.1007/s10965-010-9430-4.
  • Naficy, S.; Brown, H. R.; Razal, J. M.; Spinks, G. M.; Whitten, P. G. Progress toward Robust Polymer Hydrogels. Aust. J. Chem. 2011, 64(8), 1007–1025. DOI: 10.1071/CH11156.
  • Peak, C. W.; Wilker, J. J.; Schmidt, G. A Review on Tough and Sticky Hydrogels. Colloid. Polym. Sci. 2013, 291(9), 2031–2047. DOI: 10.1007/s00396-013-3021-y.
  • Jahandideh, A.; Muthukumarappan, K. Star-Shaped Lactic Acid Based Systems and Their Thermosetting Resins; Synthesis, Characterization, Potential Opportunities and Drawbacks. Eur. Polym. J. 2017, 87, 360–379. DOI: 10.1016/j.eurpolymj.2016.12.035.
  • Finne, A.; Albertsson, A. C. Polyester Hydrogels with Swelling Properties Controlled by the Polymer Architecture, Molecular Weight, and Crosslinking Agent. J. Polym. Sci., Part A: Polym. Chem. 2003, 41(9), 1296–1305. DOI: 10.1002/pola.10682.
  • Esmaeili, N.; Jahandideh, A.; Muthukumarappan, K.; Åkesson, D.; Skrifvars, M. Synthesis and Characterization of Methacrylated Star‐Shaped Poly (Lactic Acid) Employing Core Molecules with Different Hydroxyl Groups. J. Appl. Polym. Sci. 2017, 134(39), 45341. DOI: 10.1002/app.45341.
  • Jahandideh, A.; Esmaeili, N.; Muthukumarappan, K. Effect of Lactic Acid Chain Length on Thermomechanical Properties of star‐LA‐xylitol Resins and Jute Reinforced Biocomposites. Polym. Int. 2017, 66(7), 1021–1030. DOI: 10.1002/pi.5354.
  • Jahandideh, A.; Esmaeili, N.; Muthukumarappan, K. Synthesis and Characterization of Novel Star-Shaped Itaconic Acid Based Thermosetting Resins. J. Polym. Environ. 2018, 26(5), 2072–2085. DOI: 10.1007/s10924-017-1112-4.
  • Jahandideh, A.; Esmaeili, N.; Muthukumarappan, K. Facile Synthesis and Characterization of Activated Star-Shaped Itaconic Acid Based Thermosetting Resins. Polym. Degrad. Stab. 2018, 153, 201–209. DOI: 10.1016/j.polymdegradstab.2018.04.035.
  • Keys, K. B.; Andreopoulos, F. M.; Peppas, N. A. Poly (Ethylene Glycol) Star Polymer Hydrogels. Macromolecules. 1998, 31(23), 8149–8156. DOI: 10.1021/ma980999z.
  • Aloorkar, N.; Kulkarni, A.; Patil, R.; Ingale, D. Star Polymers: An Overview. Int. J. Pharm. Sci. Nanotech. 2012, 5(2), 1675–1684.
  • Zhang, Z. X.; Liu, K. L.; Li, J. A Thermoresponsive Hydrogel Formed from A Star–Star Supramolecular Architecture. Angew. Chem. Int. Ed. 2013, 52(24), 6180–6184. DOI: 10.1002/anie.201301956.
  • Oral, E.; Peppas, N. A. Responsive and Recognitive Hydrogels Using Star Polymers. J. Biomed. Mater. Res. Part A. 2004, 68(3), 439–447. DOI: 10.1002/jbm.a.20076.
  • Jahandideh, A.; Muthukumarappan, K. Synthesis, Characterization and Curing Optimization of a Biobased Thermosetting Resin from Xylitol and Lactic Acid. Eur. Polym. J. 2016, 83, 344–358. DOI: 10.1016/j.eurpolymj.2016.08.033.
  • Kabiri, K.; Zohuriaan‐Mehr, M. Superabsorbent Hydrogel Composites. Polym. Adv. Technol. 2003, 14(6), 438–444. DOI: 10.1002/pat.356.
  • Chang, S.; Kim, M.; Oh, S.; Min, J. H.; Kang, D.; Han, C.; Ahn, T.; Koh, W.-G.; Lee, H. Multi-Scale Characterization of Surface-Crosslinked Superabsorbent Polymer Hydrogel Spheres. Polymer. 2018, 145, 174–183. DOI: 10.1016/j.polymer.2018.04.073.
  • Wang, Y.; Liu, M.; Ni, B.; Xie, L. κ-Carrageenan–Sodium Alginate Beads and Superabsorbent Coated Nitrogen Fertilizer with Slow-Release, Water-Retention, and Anticompaction Properties. Ind. Eng. Chem. Res. 2012, 51(3), 1413–1422. DOI: 10.1021/ie2020526.
  • Pourjavadi, A.; Amini-Fazl, M.; Ayyari, M. Optimization of Synthetic Conditions CMC-g-poly (Acrylic acid)/Celite Composite Superabsorbent by Taguchi Method and Determination of Its Absorbency under Load. Expr. Polymer Lett. 2007, 1(8), 488–494. DOI: 10.3144/expresspolymlett.2007.69.
  • Moini, N.; Kabiri, K.; Zohuriaan-Mehr, M. J. Practical Improvement of SAP Hydrogel Properties via Facile Tunable Cross-Linking of the Particles Surface. Polym. Plast. Technol. 2016, 55(3), 278–290. DOI: 10.1080/03602559.2015.1070873.
  • Ghasri, M.; Jahandideh, A.; Kabiri, K.; Bouhendi, H.; Zohuriaan‐Mehr, M. J.; Moini, N. Glycerol‐Lactic Acid Star‐Shaped Oligomers as Efficient Biobased Surface Modifiers for Improving Superabsorbent Polymer Hydrogels. Polym. Advan. Technol. 2018. DOI: 10.1002/pat.4476.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.