245
Views
5
CrossRef citations to date
0
Altmetric
Reviews

The imperative role of polymers in enzymatic cholesterol biosensors- an overview

, , &
Pages 1713-1741 | Received 02 Sep 2018, Accepted 20 Jan 2019, Published online: 08 Mar 2019

References

  • Schwartz, C. C.; Vanden Broek, J. M.; Cooper, P. S. Lipoprotein Cholesteryl Ester Production, Transfer, and Output in Vivo in Humans. J. Lipid Res. 2004, 45(9), 1594–1607. DOI: 10.1194/jlr.M300511-JLR200.
  • https://blog.cytoplan.co.uk/cholesterol-functions-sources-metabolism/ ( accessed Oct 13, 2017).
  • Ahmadraji, T. The Development of Electrochemical Biosensors for Cholesterol, Doctoral dissertation, University of the West of England, 2015.
  • https://www.medicalnewstoday.com/articles/315900.php ( accessed Oct 15, 2017).
  • https://www.livestrong.com/article/112746-difference-between-triglycerides-cholesterol/ ( accessed Nov 02, 2017).
  • Reddy, R. R. K.; Chadha, A.; Bhattacharya, E. Porous Silicon Based Potentiometric Triglyceride Biosensor. Biosens. Bioelectron. 2001, 16, 313–317. DOI: 10.1016/S0956-5663(01)00129-4.
  • http://shodhganga.inflibnet.ac.in/bitstream/10603/28445/9/09_chapter%204.pdf ( accessed Nov 17, 2017).
  • Plasma Lipoproteins: Composition, Structure and Biochemsitry. http://lipidlibrary.aocs.org/lipids/lipoprot/index.htm/, 2012 (accessed July 31, 2012).
  • https://iubmb.onlinelibrary.wiley.com/doi/pdf/10.1016/0307-4412%2895%2990667-3 ( accessed Dec 21, 2017).
  • Rifai, N.; Warnick, G. R.; Dominiczak, M. H. Handbook of Lipoprotein Testing, 2nd ed.; Amer. Assoc. for Clinical Chemistry: Washington, DC, 2000.
  • https://www.disabled-world.com/artman/publish/cholesterol-chart.shtml ( accessed Feb 12, 2018).
  • Hui, D. Y.; Howles, P. N. Carboxyl Ester Lipase Structure-Function Relationship and Physiological Role in Lipoprotein Metabolism and Atherosclerosis. J. Lipid Res. 2002, 43, 2017–2030. DOI: 10.1194/jlr.R200013-JLR200.
  • Feng, B.; Liu, Y. N. A Disposable Cholesterol Enzyme Biosensor Based on Ferrocene-Capped Gold Nanoparticle Modified Screen-Printed Carbon Electrode. Int. J. Electrochem. Sci. 2015, 10, 4770–4778.
  • Vrielink, A. Cholesterol Oxidase: Structure and Function. In Cholesterol Binding and Cholesterol Transport Proteins. Structure and Function in Health and Disease Series; Harris, J. R., Ed.; Springer: Dordrecht, 2010; pp 137–158.
  • https://en.wikipedia.org/wiki/Glycerol_kinase ( accessed Mar 24, 2018).
  • Pundir, C. S.; Singh, B. S.; Narang, J. Construction of an Amperometric Triglyceride Biosensor Using PVA Membrane Bound Enzymes. Clin. Biochem. 2010, 43, 467–472. DOI: 10.1016/j.clinbiochem.2009.12.003.
  • Wang, J. Electrochemical Biosensors: Towards Point-Of-Care Cancer Diagnostics. Biosens. Bioelectron. 2006, 21, 1887–1892. DOI: 10.1016/j.bios.2005.10.027.
  • Figueroa-Miranda, G.; Feng, L.; Shiu, S. C. C.; Dirkzwager, R. M.; Cheung, Y. W.; Tanner, J. A.; Mayer, D. Aptamer-Based Electrochemical Biosensor for Highly Sensitive and Selective Malaria Detection with Adjustable Dynamic Response Range and Reusability. Sens. Actuators, B. 2018, 255, 235–243. DOI: 10.1016/j.snb.2017.07.117.
  • Thevenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Electrochemical Biosensors: Recommended Definitions and Classification. Pure Appl. Chem. 1999, 71, 2333–2348. DOI: 10.1351/pac199971122333.
  • Hasan, A.; Nurunnabi, M.; Morshed, M.; Paul, A.; Polini, A.; Kuila, T.; Jaffa, A. A. Recent Advances in Application of Biosensors in Tissue Engineering. Biomed. Res. Int. 2014. DOI: 10.1155/2014/307519.
  • Ghindilis, A. L.; Atanasov, P.; Wilkins, M.; Wilkins, E. Immunosensors: Electrochemical Sensing and Other Engineering Approaches. Biosens. Bioelectron. 1998, 13, 113–131. DOI: 10.1016/S0956-5663(97)00031-6.
  • www.sirebi.org/open/Intro_Biosensing.pdf ( accessed Dec 21, 2017).
  • Gerard, M.; Chaubey, A.; Malhotra, B. D. Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345–359. DOI: 10.1016/S0956-5663(01)00312-8.
  • Bartlett, P. N.; Whitaker, R. G. Electrochemical Immobilisation of Enzymes: Part II. Glucose Oxidase Immobilised in poly-N-methylpyrrole. J. Electroanal. Chem. Interfacial Electrochem. 1987, 224, 37–48. DOI: 10.1016/0022-0728(87)85082-9.
  • Umana, M.; Waller, J. Protein-Modified Electrodes. The Glucose Oxidase/Polypyrrole System. Anal. Chem. 1986, 58, 2979–2983.
  • Foulds, N. C.; Lowe, C. R. Enzyme Entrapment in Electrically Conducting Polymers. Immobilisation of Glucose Oxidase in Polypyrrole and Its Application in Amperometric Glucose Sensors. J. Chem. Soc., Faraday Trans. 1 F. 1986, 82, 1259–1264.
  • Fortier, G.; Bélanger, D. Characterization of the Biochemical Behavior of Glucose Oxidase Entrapped in a Polypyrrole Film. Biotechnol. Bioeng. 1991, 37, 854–858. DOI: 10.1002/bit.260370909.
  • Hammerle, M.; Schuhmann, W.; Schmidt, H. L. Amperometricpolypyrrole Enzyme Electrodes: Effect of Permeability and Enzyme Location. Sens. Actuat. B. 1992, 6, 106–112. DOI: 10.1016/0925-4005(92)80040-5.
  • Wang, J. Amperometric Biosensors for Clinical and Therapeutic Drug Monitoring: A Review. J. Pharm. Biomed. Anal. 1999, 19, 47–53. DOI: 10.1016/S0731-7085(98)00056-9.
  • Newman, J. D.; Setford, S. J. Enzymatic biosensors. Mol. Biotechnol. 2006, 32, 249–268. DOI: 10.1385/MB:32:3:249.
  • Koncki, R. Recent Developments in Potentiometric Biosensors for Biomedical Analysis. Anal. Chim. Acta. 2007, 599, 7–15. DOI: 10.1016/j.aca.2007.08.003.
  • Bobacka, J.; Ivaska, A.; Lewenstam, A. Potentiometric Ion Sensors. Chem. Rev. 2008, 108, 329–351. DOI: 10.1021/cr068100w.
  • Koyun, A.; Ahlatcıoğlu, E.; İpek, Y. K. Biosensors and Their Principles. In A Roadmap of Biomedical Engineers and Milestones; Kara, S., Ed.; InTech.Rijeka: Croatia, 2012; pp 117–142.
  • Schaudies, R. P. Biological Identification: DNA Amplification and Sequencing, Optical Sensing, Lab-On-Chip and Portable Systems; Elsevier: UK, 2014.
  • Perumal, V.; Hashim, U. Advances in Biosensors: Principle, Architecture and Applications. J. Appl. Biomed. 2014, 12, 1–15. DOI: 10.1016/j.jab.2013.02.001.
  • Berggren, C.; Bjarnason, B.; Johansson, G. Capacitive Biosensors. Electroanalysis (N.Y.N.Y.). 2001, 13, 173–180. DOI: 10.1002/1521-4109(200103)13:3%3C173::AID-ELAN173%3E3.0.CO;2-B.
  • Aghaei, A.; Hosseini, M. R. M.; Najafi, M. A Novel Capacitive Biosensor for Cholesterol Assay that Uses an Electropolymerized Molecularly Imprinted Polymer. Electrochim. Acta. 2010, 55, 1503–1508. DOI: 10.1016/j.electacta.2009.09.033.
  • Mohanty, S. P.; Kougianos, E. Biosensors: A Tutorial Review. Ieee Potentials. 2006, 25, 35–40. DOI: 10.1109/MP.2006.1649009.
  • Yuqing, M.; Jianguo, G.; Jianrong, C. Ion Sensitive Field Effect Transducer-Based Biosensors. Biotechnol. Adv. 2003, 21, 527–534. DOI: 10.1016/S0734-9750(03)00103-4.
  • Dzyadevych, S. V.; Soldatkin, A. P.; Anna, V.; Martelet, C.; Jaffrezic-Renault, N. Enzyme Biosensors Based on Ion-Selective Field-Effect Transistors. Anal. Chim. Acta. 2006, 568, 248–258. DOI: 10.1016/j.aca.2005.11.057.
  • Fan, X.; White, I. M.; Shopova, S. I.; Zhu, H.; Suter, J. D.; Sun, Y. Sensitive Optical Biosensors for Unlabeled Targets: A Review. Anal. Chim. Acta. 2008, 620, 8–26. DOI: 10.1016/j.aca.2008.05.022.
  • Fan, X.; White, I. M. Optofluidic Microsystems for Chemical and Biological Analysis. Nat. Photonics. 2011, 5, 591–597. DOI: 10.1038/nphoton.2011.206.
  • Galindo, E. Biosensors. In Biotechnology; Doelle, H. W., Rokem, S., Berovic, M., Eds.; EOLSS: UK, 2009; pp 140–167.
  • Ramsden, J. J. Optical Biosensors. J. Mol. Recognit. 1997, 10, 109–120. DOI: 10.1002/(SICI)1099-1352(199705/06)10:3%3C109::AID-JMR361%3E3.0.CO;2-D.
  • http://ocw.utm.my/file.php/74/CHAPTER_2_OCW.pdf. ( accessed Nov 11, 2017).
  • Carr, P. W.; Bowers, L. D. Immobilized Enzymes in Analytical and Clinical Chemistry; Wiley, 1980.
  • Nakamura, K.; Aizawa, M.; Miyawaki, O. Electro-Enzymology Coenzyme Regeneration, 5th ed.; Springer Science & Business Media: New York, 2013.
  • Wilson, R.; Turner, A. P. F. Glucose Oxidase: An Ideal Enzyme. Biosens. Bioelectron. 1992, 7, 165–185. DOI: 10.1016/0956-5663(92)87013-F.
  • Heering, H. A.; Hagen, W. R. Complex Electrochemistry of Flavodoxin at Carbon-Based Electrodes: Results from a Combination of Direct Electron Transfer, Flavin-Mediated Electron Transfer and Comproportionation. J. Electroanal. Chem. 1996, 404, 249–260. DOI: 10.1016/0022-0728(95)04248-2.
  • Vidal, J. C.; Espuelas, J.; Garcia-Ruiz, E.; Castillo, J. R. Amperometric Cholesterol Biosensors Based on the Electropolymerization of Pyrrole and the Electrocatalytic Effect of Prussian-Blue Layers Helped with Self-Assembled Monolayers. Talanta. 2004, 64, 655–664. DOI: 10.1016/j.talanta.2004.03.038.
  • Bongiovanni, C.; Ferri, T.; Poscia, A.; Varalli, M.; Santucci, R.; Desideri, A. An Electrochemical Multienzymatic Biosensor for Determination of Cholesterol. Bioelectrochemistry. 2001, 54, 17–22. DOI: 10.1016/S0302-4598(01)00105-2.
  • Salinas, E.; Rivero, V.; Torriero, A. A.; Benuzzi, D.; Sanz, M. I.; Raba, J. Multienzymatic-Rotating Biosensor for Total Cholesterol Determination in a FIA System. Talanta. 2006, 70, 244–250. DOI: 10.1016/j.talanta.2006.02.043.
  • Karube, I.; Hara, K.; Matsuoka, H.; Suzuki, S. Amperometric Determination of Total Cholesterol in Serum with Use of Immobilized Cholesterol Esterase and Cholesterol Oxidase. Anal. Chim. Acta. 1982, 139, 127–132. DOI: 10.1016/S0003-2670(01)93990-X.
  • Jesionowski, T.; Zdarta, J.; Krajewska, B. Enzyme Immobilization by Adsorption: A Review. Adsorption. 2014, 20, 801–821. DOI: 10.1007/s10450-014-9623-y.
  • Zhang, Y.; Ge, J.; Liu, Z. Enhanced Activity of Immobilized or Chemically Modified Enzymes. ACS Catal. 2015, 5, 4503–4513.
  • Sheldon, R. A. Enzyme Immobilization: The Quest for Optimum Performance. Adv. Synth. Catal. 2007, 349, 1289–1307. DOI: 10.1002/adsc.200700082.
  • Bartlett, P. N.; Cooper, J. M. A Review of the Immobilization of Enzymes in Electropolymerized Films. J. Electroanal. Chem. 1993, 362, 1–12. DOI: 10.1016/0022-0728(93)80001-X.
  • Vidal, J. C.; Garcia-Ruiz, E.; Espuelas, J.; Aramendia, T.; Castillo, J. R. Comparison of Biosensors Based on Entrapment of Cholesterol Oxidase and Cholesterol Esterase in Electropolymerized Films of Polypyrrole and Diaminonaphthalene Derivatives for Amperometricdetermination of Cholesterol. Anal. Bioanal.Chem. 2003, 377, 273–280. DOI: 10.1007/s00216-003-2120-x.
  • Yildiz, H. B.; Demirkol, D. O.; Sayin, S.; Yilmaz, M.; Koysuren, O.; Kamaci, M. New Amperometric Cholesterol Biosensors Using Poly (Ethyleneoxide) Conducting Polymers. J. Macromol. Sci. Part A. 2013, 50(10), 1075–1084.
  • Dave, B. C.; Dunn, B.; Valentine, J. S.; Zink, J. I. Sol Encapsulation Methods for Biosensors. Anal. Chem. 1994, 66, 1120–1127.
  • Jin, W.; Brennan, J. D. Properties and Applications of Proteins Encapsulated within Sol–Gel Derived Materials. Anal. Chimi. Acta. 2002, 461, 1–36. DOI: 10.1016/S1359-6454(99)00335-3.
  • Liu, D. M.; Chen, I. W. Encapsulation of Protein Molecules in Transparent Porous Silica Matrices via an Aqueous Colloidal Sol–Gel Process. Acta Mater. 1999, 47, 4535–4544. DOI: 10.1016/S1359-6454(99)00335-3.
  • Li, J.; Peng, T.; Peng, Y. A Cholesterol Biosensor Based on Entrapment of Cholesterol Oxidase in A Silicic Sol‐Gel Matrix at A Prussian Blue Modified Electrode. Electroynalysis (N.Y.N.Y.). 2003, 15, 1031–1037. DOI: 10.1002/elan.200390124.
  • Kumar, A.; Malhotra, R.; Malhotra, B. D.; Grover, S. K. Co-Immobilization of Cholesterol Oxidase and Horseradish Peroxidase in a Sol–Gel Film. Anal. Chim. Acta. 2000, 414, 43–50. DOI: 10.1016/S0003-2670(00)00792-3.
  • Yang, X.; Hua, L.; Gong, H.; Tan, S. N. Covalent Immobilization of an Enzyme (Glucose Oxidase) onto a Carbon Sol–Gel Silicate Composite Surface as a Biosensing Platform. Anal. Chim. Acta. 2003, 478, 67–75. DOI: 10.1016/S0003-2670(02)01507-6.
  • Parthasarathy, R. V.; Martin, C. R. Synthesis of Polymeric Microcapsule Arrays and Their Use for Enzyme Immobilization. Nature. 1994, 369, 298. DOI: 10.1038/369298a0.
  • Reyes, C.; Amyes, T. L.; Richard, J. P. Enzyme Architecture: Self-Assembly of Enzyme and Substrate Pieces of Glycerol-3-Phosphate Dehydrogenase into a Robust Catalyst of Hydride Transfer. J. Am. Chem. Soc. 2016, 138, 15251–15259. DOI: 10.1021/jacs.6b09936.
  • Dey, D.; Islam, M. N.; Hussain, S. A.;Bhattacharjee, D. (2008). Layer by Layer (Lbl) Technique for Fabrication of Electrostatic Self Assembled Ultrathin Films. International Journal of Pure and Applied Physics, 4(1),39–44.
  • Ram, M. K.; Bertoncello, P.; Ding, H.; Paddeu, S.; Nicolini, C. Cholesterol Biosensors Prepared by Layer-By-Layer Technique. Biosens. Bioelectron. 2001, 16, 849–856. DOI: 10.1016/S0956-5663(01)00208-1.
  • Ariga, K.; Ji, Q.; Hill, J. P. Enzyme-Encapsulated Layer-By-Layer Assemblies: Current Status and Challenges toward Ultimate Nanodevices. In Modern Techniques for Nano-And Microreactors/-Reactions, Adv. Polym. Sci, Caruso, F., Ed.; Springer: Berlin, Heidelberg, 2010; pp 51–87. DOI: 10.1007/12_2009_42.
  • Zourob, M. Recognition Receptors in Biosensors, 1st ed.; Springer: New York, 2010.
  • Kumar, A.; Chaubey, A.; Grover, S. K.; Malhotra, B. D. Immobilization of Cholesterol Oxidase and Potassium Ferricyanide on Dodecylbenzenesulfonate Ion‐Doped Polypyrrole Film. J. Appl. Polym. Sci. 2001, 82, 3486–3491. DOI: 10.1002/app.2210.
  • José, M. G. Immobilization of Enzymes and Cells: Methods in Biotechnology, 2nd ed.; Humana Press: Totowa NJ, 2006.
  • Costa, S. A.; Azevedo, H. S.; Reis, R. L. Enzyme Immobilization in Biodegradable Polymers for Biomedical Applications. In Biodegradable Systems in Tissue Engineering and Regenerative Medicine; Reis, R. L., Román, J. S., Eds.; CRC Press: US, 2005; pp 301–323.
  • Li, G., & Miao, P. 2013. Theoretical background of electrochemical analysis. In Electrochemical analysis of proteins and cells (pp. 5–18). Springer, Berlin, Heidelberg
  • McCreery, R. L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687.
  • Taylor, R. J.; Humffray, A. A. Electrochemical Studies on Glassy Carbon Electrodes: I. Electron Transfer Kinetics. J. Electroanal. Chem. Interfacial Electrochem. 1973, 42, 347–354. DOI: 10.1016/S0022-0728(73)80324-9.
  • Fagan, D. T.; Hu, I. F.; Kuwana, T. Vacuum Heat-Treatment for Activation of Glassy Carbon Electrodes. Anal. Chem. 1985, 57, 2759–2763.
  • Stutts, K. J.; Kovach, P. M.; Kuhr, W. G.; Wightman, R. M. Enhanced Electrochemical Reversibility at Heat-Treated Glassy Carbon Electrodes. Anal. Chem. 1983, 55, 1632–1634.
  • Hershenhart, E.; McCreery, R. L.; Knight, R. D. In Situ Cleaning and Activation of Solid Electrode Surfaces by Pulsed Laser Light. Anal. Chem. 1984, 56, 2256–2257.
  • Dekanski, A.; Stevanović, J.; Stevanović, R.; Nikolić, B. Ž.; Jovanović, V. M. Glassy Carbon Electrodes: I. Characterization and Electrochemical Activation. Carbon. 2001, 39, 1195–1205. DOI: 10.1016/S0008-6223(00)00228-1.
  • Ambrosi, A.; Sasaki, T.; Pumera, M. Platelet Graphite Nanofibers for Electrochemical Sensing and Biosensing: The Influence of Graphene Sheet Orientation. Chem. Asian J. 2010, 5, 266–271. DOI: 10.1002/asia.200900544.
  • Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science. 2004, 306, 666–669. DOI: 10.1126/science.1102896.
  • Bunch, J. S.; Van Der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; McEuen, P. L. Electromechanical Resonators from Graphene Sheets. Science. 2007, 315, 490–493. DOI: 10.1126/science.1136836.
  • Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. DOI: 10.1038/nmat1849.
  • Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Geim, A. K. Fine Structure Constant Defines Visual Transparency of Graphene. Science. 2008, 320(5881), 1308. DOI: 10.1126/science.1156965.
  • Artiles, M. S.; Rout, C. S.; Fisher, T. S. Graphene-Based Hybrid Materials and Devices for Biosensing. Adv. Drug Delivery Rev. 2011, 63, 1352–1360. DOI: 10.1016/j.addr.2011.07.005.
  • Pumera, M. Graphene-Based Nanomaterials and Their Electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157. DOI: 10.1039/C002690P.
  • Alwarappan, S.; Erdem, A.; Liu, C.; Li, C. Z. Probing the Electrochemical Properties of Graphenenanosheets for Biosensing Applications. J. Phys. Chem. C. 2009, 113(20), 8853–8857.
  • Shumyantseva, V.; Deluca, G.; Bulko, T.; Carrara, S.; Nicolini, C.; Usanov, S. A.; Archakov, A. Cholesterol Amperometric Biosensor Based on Cytochrome P450scc. Biosens. Bioelectron. 2004, 19(9), 971–976. DOI: 10.1016/j.bios.2003.09.001.
  • Qiaocui, S.; Tuzhi, P.; Yunu, Z.; Yang, C. F. An Electrochemical Biosensor with Cholesterol Oxidase/Sol‐Gel Film on a Nanoplatinum/Carbon Nanotube Electrode. Electroanalysis. 2005, 17, 857–861. DOI: 10.1002/elan.200403162.
  • Salimi, A.; Hallaj, R.; Khayatian, G. R. Amperometric Detection of Morphine at Preheated Glassy Carbon Electrode Modified with Multiwall Carbon Nanotubes. Electroanalysis. 2005, 17(10), 873–879. DOI: 10.1002/elan.200403166.
  • Dempsey, E. M. Design and Development of Some Amperometric Biosensors Based on Enzymes, Antibodies and Plant Tissue, Doctoral dissertation, Dublin City University, Ireland 1993.
  • Nguyen, M. T.; Mortensen, J.; Nguyen, B. H. A. Electrochemical Preanodization of Glassy Carbon Electrode and Application to Determine Chloramphenicol. Mal. J. Anal. Sci. 2008, 12, 586–592.
  • Gholivand, M. B.; Khodadadian, M. Amperometric Cholesterol Biosensor Based on the Direct Electrochemistry of Cholesterol Oxidase and Catalase on a Graphene/Ionic Liquid-Modified Glassy Carbon Electrode. Biosens. Bioelectron. 2014, 53, 472–478. DOI: 10.1016/j.bios.2013.09.074.
  • Matuszewski, W.; Trojanowicz, M. Graphite Paste-Based Enzymatic Glucose Electrode for Flow Injection Analysis. Analyst. 1988, 113, 735–738. DOI: 10.1039/AN9881300735.
  • Wang, J.; Wu, L. H.; Lu, Z.; Li, R.; Sanchez, J. Mixed Ferrocene-Glucose Oxidase-Carbon-Paste Electrode for Amperometric Determination of Glucose. Anal. Chim. Acta. 1990, 228, 251–257. DOI: 10.1016/S0003-2670(00)80501-2.
  • Tığ, G. A.; Zeybek, D. K.; Pekyardımcı, Ş. Fabrication of Amperometric Cholesterol Biosensor Based on SnO2 Nanoparticles and Nafion-Modified Carbon Paste Electrode. Chem. Pap. 2016, 70(6), 695–705. DOI: 10.1515/chempap-2016-0005.
  • Uzun, S.; Kayaci, F.; Uyar, T.; Timur, S.; Toppare, L. Bioactive Surface Design Based on Functional Composite Electrospunnanofibers for Biomolecule Immobilization and Biosensor Applications. ACS Appl. Mater. Interfaces. 2014, 6, 5235–5243. DOI: 10.1021/am5005927.
  • Bajaj, B.; Joh, H. I.; Jo, S. M.; Kaur, G.; Sharma, A.; Tomar, M.; Gupta, V.; Lee, S. Controllable One Step Copper Coating on Carbon Nanofibers for Flexible Cholesterol Biosensor Substrates. J. Mater. Chem. B. 2016, 4, 229–236. DOI: 10.1039/C5TB01781E.
  • Pruna, R.; Palacio, F.; López, M. Towards Nanostructured ITO-Based Electrochemical Sensors: Fabrication, Characterization and Functionalization. Multidiscip. Digital Publishing Inst. Proc. August 2017, 1(4), 288.
  • Liu, H.; Avrutin, V.; Izyumskaya, N.; Özgür, Ü.; Morkoç, H. Transparent Conducting Oxides for Electrode Applications in Light Emitting and Absorbing Devices. Superlattices Microstruct. 2010, 48, 458–484.
  • Khan, M. Z. H.; Nakanishi, T.; Osaka, T. Effects of Chemical Treatment of Indium Tin Oxide Electrode on Its Surface Roughness and Work Function. Surf. Coat. Technol. 2014, 244, 189–193. DOI: 10.1016/j.surfcoat.2014.02.017.
  • Nakanishi, T.; Ueno, T.; Matsunaga, M.; Khan, M.; Hossain, Z.; Osaka, T. Potential Response of Monolayer‐Modified Indium Tin Oxide Electrodes to Indole Compounds. Electroanalysis. 2010, 22, 393–398. DOI: 10.1002/elan.200900420.
  • Khan, M. Z. H.; Nakanishi, T.; Kuroiwa, S.; Hoshi, Y.; Osaka, T. Effect of Surface Roughness and Surface Modification of Indium Tin Oxide Electrode on Its Potential Response to Tryptophan. Electrochim. Acta. 2011, 56, 8657–8661. DOI: 10.1016/j.electacta.2011.07.068.
  • Donley, C.; Dunphy, D.; Paine, D.; Carter, C.; Nebesny, K.; Lee, P.; Armstrong, N. R. Characterization of Indium− Tin Oxide Interfaces Using X-Ray Photoelectron Spectroscopy and Redox Processes of a Chemisorbed Probe Molecule: Effect of Surface Pretreatment Conditions. Langmuir. 2002, 18(2), 450–457.
  • Koide, Y.; Such, M. W.; Basu, R.; Evmenenko, G.; Cui, J.; Dutta, P.; Marks, T. J. Hot Microcontact Printing for Patterning ITO Surfaces. Methodology, Morphology, Microstructure, and OLED Charge Injection Barrier Imaging. Langmuir. 2003, 19(1), 86–93.
  • Barik, M. A.; Sarma, M. K.; Sarkar, C. R.; Dutta, J. C. Highly Sensitive Potassium-Doped Polypyrrole/Carbon Nanotube-Based Enzyme Field Effect Transistor (ENFET) for Cholesterol Detection. Appl. Biochem. Biotechnol. 2014, 174, 1104–1114. DOI: 10.1007/s12010-014-1029-5.
  • Analytical Electrochemistry: The Basic Concepts. Analytical Sciences Digital Library. http://www.asdlib.org/onlineArticles/ecourseware/Kelly_Potentiometry/EC_CONCEPTS1.HTM ( accessed Mar 13, 2018).
  • Sharma, R.; Sinha, R. K.; Agrawal, V. V. Mediator-Free Total Cholesterol Estimation Using a Bi-Enzyme Functionalized Nanostructured Gold Electrode. RSC Adv. 2015, 5, 41786–41794. DOI: 10.1039/C5RA03053F.
  • Shen, J.; Liu, C. C. Development of a Screen-Printed Cholesterol Biosensor: Comparing the Performance of Gold and Platinum as the Working Electrode Material and Fabrication Using a Self-Assembly Approach. Sens. Actuators, B. 2007, 120, 417–425. DOI: 10.1016/j.snb.2006.02.035.
  • Molaei, R.; Sabzi, R. E.; Farhadi, K.; Kheiri, F.; Forough, M. Amperometric Biosensor for Cholesterol Based on Novel Nanocomposite Array Gold Nanoparticles/Acetone-Extracted Propolis/Multiwall Carbon Nanotubes/Gold. IET Micro. Nano Lett. IET. 2014, 9, 100–104. DOI: 10.1049/mnl.2013.0664.
  • Hart, J. P.; Crew, A.; Crouch, E.; Honeychurch, K. C.; Pemberton, R. M. Some Recent Designs and Developments of Screen‐Printed Carbon Electrochemical Sensors/Biosensors for Biomedical, Environmental, and Industrial Analyses. Anal. Lett. 2004, 37, 789–830. DOI: 10.1081/AL-120030682.
  • Renedo, O. D.; Alonso-Lomillo, M. A.; Martínez, M. A. Recent Developments in the Field of Screen-Printed Electrodes and Their Related Applications. Talanta. 2007, 73, 202–219. DOI: 10.1016/j.talanta.2007.03.050.
  • Huang, Y.; Cui, L.; Xue, Y.; Zhang, S.; Zhu, N.; Liang, J.; Li, G. Ultrasensitive Cholesterol Biosensor Based on Enzymatic Silver Deposition on Gold Nanoparticles Modified Screen-Printed Carbon Electrode. Mater. Sci. Eng. C. 2017, 77, 1–8. DOI: 10.1016/j.msec.2017.03.253.
  • Ivory, D. M.; Miller, G. G.; Sowa, J. M.; Shacklette, L. W.; Chance, R. R.; Baughman, R. H. Highly Conducting Charge‐Transfer Complexes of Poly (P‐Phenylene). J. Chem. Phys. 1979, 71, 1506–1507. DOI: 10.1063/1.438420.
  • Margolis, J. Conductive Polymers and Plastics, 1st ed.; Chapman and Hall: New York, 1989.
  • Battin, A. J. 2009. Determination and evaluation of electrical properties of metal-containing condensation polymers. Florida Atlantic University.
  • Alcacer, L. Conducting Polymers, Special Applications, 1st ed.; Reidel, Dordrecht: Portugal, 1987.
  • Salaneck, W. R.; Clark, D. T.; Samuelsen, E. J. Science and Applications of Conducting Polymers; IOP Publishing: Norway, 1991; pp 135.
  • Salaneck, W. R.; Clark, D. T.; Samuelsen, E. J. Science and Application of Conducting Polymers; IOP Publishing: Norway, 1991; pp 55.
  • Margolis, J. Conductive Polymers and Plastics; Chapman and Hall: New York, 1989; pp 33.
  • Salaneck, W. R.; Clark, D. T.; Samuelsen, E. J. Science and Application of Conducting Polymers; IOP Publishing: Norway, 1991; pp 52.
  • Salaneck, W. R.; Clark, D. T.; Samuelsen, E. J. Science and Application of Conducting Polymers; IOP Publishing: Norway, 1991; pp 168.
  • Harsányi, G. Polymer Films in Sensor Applications: A Review of Present Uses and Future Possibilities. Sens. Rev. 2000, 20, 98–105. DOI: 10.1108/02602280010319169.
  • Guimard, N. K.; Gomez, N.; Schmidt, C. E. Conducting Polymers in Biomedical Engineering. Prog. Polym. Sci. 2007, 32, 876–921. DOI: 10.1016/j.progpolymsci.2007.05.012.
  • Meer, S.; Kausar, A.; Iqbal, T. Trends in Conducting Polymer and Hybrids of Conducting Polymer/Carbon Nanotube: A Review. Polym.-Plast. Technol. Eng. 2016, 55(13), 1416–1440.
  • Gerard, M.; Chaubey, A.; Malhotra, B. D. Application of Conducting Polymers to Biosensors. Biosens. Bioelectron. 2002, 17, 345–359. DOI: 10.1016/S0956-5663(01)00312-8.
  • Das, T. K.; Prusty, S. Review on Conducting Polymers and Their Applications. Polym.-Plast. Technol. Eng. 2012, 51(14), 1487–1500.
  • Ratautaite, V.; Ramanaviciene, A.; Oztekin, Y.; Voronovic, J.; Balevicius, Z.; Mikoliunaite, L.; Ramanavicius, A. Electrochemical Stability and Repulsion of Polypyrrole Film. Colloids Surf. A. 2013, 418, 16–21. DOI: 10.1016/j.colsurfa.2012.10.052.
  • Kim, S.; Jang, L. K.; Park, H. S.; Lee, J. Y. Electrochemical Deposition of Conductive and Adhesive Polypyrrole-Dopamine Films. Sci. Rep. 2016, 6, 30475. DOI: 10.1038/srep30475.
  • Özer, B. O.; Çete, S. Development of a Novel Biosensor Based on a Polypyrroledodecylbenzenesulphonate (Ppy–Dbs) Film for the Determination of Amperometric Cholesterol. Artif. Cells Nanomed. Biotechnol. 2017, 45, 824–832. DOI: 10.1080/21691401.2016.1178133.
  • Brahim, S.; Narinesingh, D.; Guiseppi-Elie, A. Amperometric Determination of Cholesterol in Serum Using a Biosensor of Cholesterol Oxidase Contained within a Polypyrrole–Hydrogel Membrane. Anal. Chim. Acta. 2001, 448, 27–36. DOI: 10.1016/S0003-2670(01)01321-6.
  • Solanki, P. R.; Arya, S. K.; Singh, S. P.; Pandey, M. K.; Malhotra, B. D. Application of Electrochemically Prepared poly-N-methylpyrrole-p-toluene Sulphonate Films to Cholesterol Biosensor. Sens. Actuators, B. 2007, 123, 829–839. DOI: 10.1016/j.snb.2006.10.046.
  • Singh, S.; Solanki, P. R.; Pandey, M. K.; Malhotra, B. D. Cholesterol Biosensor Based on Cholesterol Esterase, Cholesterol Oxidase and Peroxidase Immobilized onto Conducting Polyaniline Films. Sens. Actuators, B. 2006, 115, 534–541. DOI: 10.1016/j.snb.2005.10.025.
  • Dhand, C.; Singh, S. P.; Arya, S. K.; Datta, M.; Malhotra, B. D. Cholesterol Biosensor Based on Electrophoretically Deposited Conducting Polymer Film Derived from Nano-Structured Polyaniline Colloidal Suspension. Anal. Chim. Acta. 2007, 602, 244–251. DOI: 10.1016/j.aca.2007.09.028.
  • Ohnuki, H.; Saiki, T.; Kusakari, A.; Endo, H.; Ichihara, M.; Izumi, M. Incorporation of Glucose Oxidase into Langmuir− Blodgett Films Based on Prussian Blue Applied to Amperometric Glucose Biosensor. Langmuir. 2007, 23(8), 4675–4681.
  • Matharu, Z.; Sumana, G.; Arya, S. K.; Singh, S. P.; Gupta, V.; Malhotra, B. D. Polyaniline Langmuir− Blodgett Film Based Cholesterol Biosensor. Langmuir. 2007, 23(26), 13188–13192.
  • Wei, B.; Liu, J.; Ouyang, L.; Kuo, C. C.; Martin, D. C. Significant Enhancement of PEDOT Thin Film Adhesion to Inorganic Solid Substrates with EDOT-acid. ACS Appl. Mater. Interfaces. 2015, 7, 15388–15394. DOI: 10.1021/acsami.5b03350.
  • Kakhki, S.; Barsan, M. M.; Shams, E.; Brett, C. M. New Redox and Conducting Polymer Modified Electrodes for Cholesterol Biosensing. Anal. Methods. 2013, 5, 1199–1204. DOI: 10.1039/C3AY26409B.
  • Yang, R.; Ruan, C.; Dai, W.; Deng, J.; Kong, J. Electropolymerization of Thionine in Neutral Aqueous Media and H2O2 Biosensor Based on Poly(Thionine). Electrochim. Acta. 1999, 44, 1585–1596. DOI: 10.1016/S0013-4686(98)00283-7.
  • Rahman, M. M.; Li, X. B.; Kim, J.; Lim, B. O.; Ahammad, A. S.; Lee, J. J. A Cholesterol Biosensor Based on A Bi-Enzyme Immobilized on Conducting Poly (Thionine) Film. Sens. Actuators, B. 2014, 202, 536–542. DOI: 10.1016/j.snb.2014.05.114.
  • Yıldırımoğlu, F.; Arslan, F.; Çete, S.; Yaşar, A. Preparation of a Polypyrrole-Polyvinylsulphonate Composite Film Biosensor for Determination of Cholesterol Based on Entrapment of Cholesterol Oxidase. Sensors. 2009, 9, 6435–6445. DOI: 10.3390/s90806435.
  • Liu, Z. M.; Yang, Y.; Wang, H.; Liu, Y. L.; Shen, G. L.; Yu, R. Q. A Hydrogen Peroxide Biosensor Based on nano-Au/PAMAM Dendrimer/Cystamine Modified Gold Electrode. Sens. Actuators, B. 2005, 106, 394–400. DOI: 10.1016/j.snb.2004.08.023.
  • García‐Ruiz, E.; Vidal, J. C.; Aramendía, M. T.; Castillo, J. R. Design of an Interference‐Free Cholesterol Amperometric Biosensor Based on the Electrosynthesis of Polymeric Films of Diaminonaphthalene Isomers. Electroanalysis. 2004, 16, 497–504. DOI: 10.1002/elan.200302853.
  • Ram, M. K.; Bertoncello, P.; Ding, H.; Paddeu, S.; Nicolini, C. Cholesterol Biosensors Prepared by Layer-By-Layer Technique. Biosens. Bioelectron. 2001, 16, 849–856. DOI: 10.1016/S0956-5663(01)00208-1.
  • Guo, M.; Chen, J.; Li, J.; Nie, L.; Yao, S. Carbon Nanotubes‐Based Amperometric Cholesterol Biosensor Fabricated through Layer‐by‐Layer Technique. Electroanalysis. 2004, 16, 1992–1998. DOI: 10.1002/elan.200403053.
  • Singh, V.; Tripathi, D. N.; Tiwari, A.; Sanghi, R. Microwave Promoted Synthesis of Chitosan‐Graft‐Poly (Acrylonitrile). J. Appl. Polym. Sci.. 2005, 95, 820–825. DOI: 10.1002/app.21245.
  • Singh, V.; Tiwari, A.; Tripathi, D. N.; Sanghi, R. Microwave Enhanced Synthesis of Chitosan-Graft-Polyacrylamide. Polymer. 2006, 47, 254–260. DOI: 10.1016/j.polymer.2005.10.101.
  • Gahlaut, A.; Hooda, V.; Dhull, V.; Hooda, V. Recent Approaches to Ameliorate Selectivity and Sensitivity of Enzyme Based Cholesterol Biosensors: A Review. Artif. Cells Nanomed. Biotechnol. 2018, 46, 472–481. DOI: 10.1080/21691401.2017.1337028.
  • Shukla, S. K.; Mishra, A. K.; Arotiba, O. A.; Mamba, B. B. Chitosan-Based Nanomaterials: A State-Of-The-Art Review. Int. J. Biol. Macromol. 2013, 59, 46–58. DOI: 10.1016/j.ijbiomac.2013.04.043.
  • Safavi, A.; Farjami, F. Electrodeposition of Gold–Platinum Alloy Nanoparticles on Ionic Liquid–Chitosan Composite Film and Its Application in Fabricating an Amperometric Cholesterol Biosensor. Biosens. Bioelectron. 2011, 26, 2547–2552. DOI: 10.1016/j.bios.2010.11.002.
  • Ansari, A. A.; Kaushik, A.; Solanki, P. R.; Malhotra, B. E. Electrochemical Cholesterol Sensor Based on Tin Oxide‐Chitosan Nanobiocomposite Film. Electroanalysis. 2009, 21, 965–972. DOI: 10.1002/elan.200804499.
  • Tan, X.; Li, M.; Cai, P.; Luo, L.; Zou, X. An Amperometric Cholesterol Biosensor Based on Multiwalled Carbon Nanotubes and Organically Modified Sol-Gel/Chitosan Hybrid Composite Film. Anal. Biochem. 2005, 337, 111–120. DOI: 10.1016/j.ab.2004.10.040.
  • Rodrigues, F.; Devi, S.; Meenakshi, S.; Pandian, K.; Perumal, P. CarbonNanotube Based Amperometric Biosensor for the Quantitative Detection of Cholesterol. J. Biotechnol. Biochem. 2017, 3, 10–20. DOI: 10.9790/264X-03021020.
  • Tiwari, A.; Gong, S. Electrochemical Study of Chitosan‐SiO2‐MWNT Composite Electrodes for the Fabrication of Cholesterol Biosensors. Electroanalysis. 2008, 20, 2119–2126. DOI: 10.1002/elan.200804296.
  • Wang, S.; Ji, X.; Yuan, Z. Study of Cellulose Acetate Membrane-Based Glucose Biosensors. Chin. J. Biotechnol. 1995, 11, 199–205.
  • Pundir, C. S. Fabrication of Pt Based Amperometric Cholesterol Biosensor Using Cellulose Acetate Membrane. J. Sci. Ind. Res. 2008, 67, 299–306. http://hdl.handle.net/123456789/796.
  • Barik, A.; Solanki, P. R.; Kaushik, A.; Ali, A.; Pandey, M. K.; Kim, C. G.; Malhotra, B. D. Polyaniline–Carboxymethylcellulosenanocomposite for Cholesterol Detection. J. Nanosci. Nanotechnol. 2010, 10, 6479–6488. DOI: 10.1166/jnn.2010.2511.
  • Crumbliss, A. L.; Stonehuerner, J. G.; Henkens, R. W.; Zhao, J.; O’Daly, J. P. A Carrageenan Hydrogel Stabilized Colloidal Gold Multi-Enzyme Biosensor Electrode Utilizing Immobilized Horseradish Peroxidase and Cholesterol Oxidase/Cholesterol Esterase to Detect Cholesterol in Serum and Whole Blood. Biosens. Bioelectron. 1993, 8, 331–337. DOI: 10.1016/0956-5663(93)85014-F.
  • Wang, J. Nanomaterial-Based Electrochemical Biosensors. Analyst. 2005, 130, 421–426. DOI: 10.1039/B414248A.
  • Liang, F.; Liu, C.; Jiao, J.; Li, S.; Xia, J.; Hu, J. ITO Electrode Modified by a Gold Ion Implantation Technique for Direct Electrocatalytic Sensing of Hydrogen Peroxide. Microchim. Acta. 2012, 177, 389–395. DOI: 10.1007/s00604-012-0792-7.
  • Lanzellotto, C.; Favero, G.; Antonelli, M. L.; Tortolini, C.; Cannistraro, S.; Coppari, E.; Mazzei, F. Nanostructured Enzymatic Biosensor Based on Fullerene and Gold Nanoparticles: Preparation, Characterization and Analytical Applications. Biosens. Bioelectron. 2014, 55, 430–437. DOI: 10.1016/j.bios.2013.12.028.
  • http://shodhganga.inflibnet.ac.in/bitstream/10603/11458/6/06_chapter%201.pdf ( accessed Dec 28, 2017).
  • Turner, A. P. Tutorial Review. Chem. Soc. Rev. 2013, 42, 3184–3196. DOI: 10.1039/c3cs35528d.
  • Khan, M. Z. H. Nanoparticles Modified ITO Based Biosensor. J. Electron. Mater. 2017, 46, 2254–2268. DOI: 10.1007/s11664-016-5172-3.
  • Yanez-Sedeno, P.; Pingarron, J. M. Gold Nanoparticle-Based Electrochemical Biosensors. Anal. Bioanal. Chem. 2005, 382, 884–886. DOI: 10.1007/s00216-005-3221-5.
  • Liu, S.; Leech, D.; Ju, H. Application of Colloidal Gold in Protein Immobilization, Electron Transfer, and Biosensing. Anal. Lett. 2003, 36, 1–19. DOI: 10.1081/AL-120017740.
  • Huang, Q.; An, Y.; Tang, L.; Jiang, X.; Chen, H.; Bi, W.; Zhang, W. A Dual Enzymatic-Biosensor for Simultaneous Determination of Glucose and Cholesterol in Serum and Peritoneal Macrophages of Diabetic Mice: Evaluation of the Diabetes-Accelerated Atherosclerosis Risk. Anal. Chim. Acta. 2011, 707, 135–141. DOI: 10.1016/j.aca.2011.09.003.
  • Zhu, L.; Xu, L.; Tan, L.; Tan, H.; Yang, S.; Yao, S. Direct Electrochemistry of Cholesterol Oxidase Immobilized on Gold Nanoparticles-Decorated Multiwalled Carbon Nanotubes and Cholesterol Sensing. Talanta. 2013, 106, 192–199. DOI: 10.1016/j.talanta.2012.12.036.
  • Wang, Z.; Luo, X.; Wan, Q.; Wu, K.; Yang, N. Versatile Matrix for Constructing Enzyme-Based Biosensors. ACS Appl. Mater. Interfaces. 2014, 6, 17296–17305.
  • Cao, S.; Zhang, L.; Chai, Y.; Yuan, R. An Integrated Sensing System for Detection of Cholesterol Based on TiO2–Graphene–Pt–Pdhybridnanocomposites. Biosens. Bioelectron. 2013, 42, 532–538. DOI: 10.1016/j.bios.2012.10.048.
  • Tian, M.; Wu, G.; Chen, A. Unique Electrochemical Catalytic Behavior of Pt Nanoparticles Deposited on TiO2 Nanotubes. ACS Catal. 2012, 2, 425–432.
  • Hendji, A. N.; Bataillard, P.; Jaffrezic-Renault, N. Covalent Immobilization of Glucose Oxidase on Silanized Platinum Microelectrode for the Monitoring of Glucose. Sens. Actuators, B. 1993, 15, 127–134. DOI: 10.1016/0925-4005(93)85038-C.
  • Hall, S. B.; Khudaish, E. A.; Hart, A. L. Electrochemical Oxidation of Hydrogen Peroxide at Platinum Electrodes. Part V: Inhibition by Chloride. Electrochim. Acta. 2000, 45, 3573–3579. DOI: 10.1016/S0013-4686(00)00481-3.
  • Yang, M.; Yang, Y.; Yang, H.; Shen, G.; Yu, R. Layer-By-Layer Self-Assembled Multilayer Films of Carbon Nanotubes and Platinum Nanoparticles with Polyelectrolyte for the Fabrication of Biosensors. Biomaterials. 2006, 27, 246–255. DOI: 10.1016/j.biomaterials.2005.05.077.
  • Dey, R. S.; Raj, C. R. Development of an Amperometric Cholesterol Biosensor Based on Graphene− Pt Nanoparticle Hybrid Material. J. Phys. Chem. C. 2010, 114, 21427–21433.
  • Si, Y.; Samulski, E. T. Exfoliated Graphene Separated by Platinum Nanoparticles. Chem. Mat. 2008, 20, 6792–6797.
  • Chauhan, R.; Nagar, B.; Solanki, P. R.; Basu, T. Development of Triglyceride Biosensor Based on a Platinum Nano Particle and Polypyrrolenano Composite Electrode. Mater. Focus. 2013, 2, 316–323. DOI: 10.1166/mat.2013.1096.
  • Khan, R.; Kaushik, A.; Solanki, P. R.; Ansari, A. A.; Pandey, M. K.; Malhotra, B. D. Zinc Oxide Nanoparticles-Chitosan Composite Film for Cholesterol Biosensor. Anal. Chim. Acta. 2008, 616, 207–213. DOI: 10.1016/j.aca.2008.04.010.
  • Qin, Y.; Wang, X.; Wang, Z. L. Microfibre–Nanowire Hybrid Structure for Energy Scavenging. Nature. 2008, 451, 809–813. DOI: 10.1038/nature06601.
  • Jamieson, T.; Bakhshi, R.; Petrova, D.; Pocock, R.Imani, M.; Seifalian, A. M. (2007). Biological Applications of Quantum Dots. Biomaterials, 28(31),4717–4732.
  • Singh, S. P.; Arya, S. K.; Pandey, P.; Malhotra, B. D.; Saha, S.; Sreenivas, K.; Gupta, V. Cholesterol Biosensor Based on Rf Sputtered Zinc Oxide Nanoporous Thin Film. Appl. Phys. Lett. 2007, 91, 063901. DOI: 10.1063/1.2768302.
  • Han, J.; Mantas, P. Q.; Senos, A. M. R. Effect of Al and Mn Doping on the Electrical Conductivity ofZnO. J. Eur. Ceram. Soc. 2001, 21, 1883–1886. DOI: 10.1016/S0955-2219(01)00136-4.
  • Batra, N.; Tomar, M.; Gupta, V. Al: ZnO Thin Film: An Efficient Matrix for Cholesterol Detection. J. Appl. Phys. 2012, 112, 114701. DOI: 10.1063/1.4768450.
  • Umar, A.; Rahman, M. M.; Vaseem, M.; Hahn, Y. B. Ultra-Sensitive Cholesterol Biosensor Based on Low-Temperature Grown ZnO Nanoparticles. Electrochem. Commun. 2009, 11, 118–121. DOI: 10.1016/j.elecom.2008.10.046.
  • Israr, M. Q.; Sadaf, J. R.; Asif, M. H.; Nur, O.; Willander, M.; Danielsson, B. Potentiometric Cholesterol Biosensor Based on ZnO Nanorods Chemically Grown on Ag Wire. Thin Solid Films. 2010, 519, 1106–1109. DOI: 10.1016/j.tsf.2010.08.052.
  • Kangkamano, T.; Numnuam, A.; Limbut, W.; Kanatharana, P.; Vilaivan, T.; Thavarungkul, P. Pyrrolidinyl PNA Polypyrrole/Silver Nanofoam Electrode as a Novel Label-Free Electrochemical miRNA-21 Biosensor. Biosens. Bioelectron. 2018, 102, 217–225. DOI: 10.1016/j.bios.2017.11.024.
  • Nantaphol, S.; Chailapakul, O.; Siangproh, W. Sensitive and Selective Electrochemical Sensor Using Silver Nanoparticles Modified Glassy Carbon Electrode for Determination of Cholesterol in Bovine Serum. Sens. Actuators, B. 2015, 207, 193–198. DOI: 10.1016/j.snb.2014.10.041.
  • Berry, C. C.; Curtis, A. S. Functionalisation of Magnetic Nanoparticles for Applications in Biomedicine. J. Phys. D Appl. Phys. 2003, 36, R198. DOI: 10.1088/0022-3727/36/13/203.
  • Huang, S. H.; Liao, M. H.; Chen, D. H. Direct Binding and Characterization of Lipase onto Magnetic Nanoparticles. Biotechnol. Progr. 2003, 19, 1095–1100. DOI: 10.1021/bp025587v.
  • Kouassi, G. K.; Irudayaraj, J.; McCarty, G. Examination of Cholesterol Oxidase Attachment to Magnetic Nanoparticles. J. Nanobiotechnol. 2005, 3, 1. DOI: 10.1186/1477-3155-3-1.
  • Šulek, F.; Drofenik, M.; Habulin, M.; Knez, Ž. Surface Functionalization of Silica-Coated Magnetic Nanoparticles for Covalent Attachment of Cholesterol Oxidase. J. Magn. Magn. Mater. 2010, 322(2), 179–185. DOI: 10.1016/j.jmmm.2009.07.075.
  • Satvekar, R. K.; Pawar, S. H. Multienzymatic Cholesterol Nanobiosensor Using Core–Shell Nanoparticles Incorporated Silica Nanocomposite. J. Med. Biol. Eng. 2018, 1–9. DOI: 10.1007/s40846-017-0345-y.
  • Ahmad, M.; Pan, C.; Gan, L.; Nawaz, Z.; Zhu, J. Highly Sensitive Amperometric Cholesterol Biosensor Based on Pt-Incorporated Fullerene-Like ZnOnanospheres. J. Phys. Chem. C. 2009, 114, 243–250. DOI: 10.1021/jp9089497.
  • Chaubey, A.; Malhotra, B. Mediated Biosensors. Biosens. Bioelectron. 2002, 17, 441–456. DOI: 10.1016/S0956-5663(01)00313-X.
  • Karyakin, A. A. Prussian Blue and Its Analogues: Electrochemistry and Analytical Applications. Electroanalysis. 2001, 13, 813–819. DOI: 10.1002/1521-4109(200106)13:10%3C813::AID-ELAN813%3E3.0.CO;2-Z.
  • Borisov, S. M.; Wolfbeis, O. S. Optical Biosensors. Chem. Rev. 2008, 108, 423–461. DOI: 10.1021/cr068105t.
  • Vasilescu, A.; Andreescu, S.; Bala, C.; Litescu, S. C.; Noguer, T.; Marty, J. L. Screen-Printed Electrodes with electropolymerizedMeldola Blue as Versatile Detectors in Biosensors. Biosens. Bioelectron. 2003, 18, 781–790. DOI: 10.1016/S0956-5663(03)00044-7.
  • Palmisano, F.; Zambonin, P. G.; Centonze, D.; Quinto, M. A Disposable, Reagentless, Third-Generation Glucose Biosensor Based on Overoxidized Poly (Pyrrole)/Tetrathiafulvalene− Tetracyanoquinodimethane Composite. Anal. Chem. 2002, 74, 5913–5918. DOI: 10.1021/ac0258608.
  • Deng, H.; Teo, A. K. L.; Gao, Z. An Interference-Free Glucose Biosensor Based on a Novel Low Potential Redox Polymer Mediator. Sens. Actuators, B. 2014, 191, 522–528. DOI: 10.1016/j.snb.2013.10.059.
  • Fang, Y.; Ramasamy, R. P. Current and Prospective Methods for Plant Disease Detection. Biosens. 2015, 5, 537–561. DOI: 10.3390/bios5030537 .
  • Brunetti, B.; Ugo, P.; Moretto, L. M.; Martin, C. R. Electrochemistry of Phenothiazine and Methylviologen Biosensor Electron-Transfer Mediators at Nanoelectrode Ensembles. J. Electroanal. Chem. 2000, 491, 166–174. DOI: 10.1016/S0022-0728(00)00169-8.
  • Aoyagi, T.; Nakamura, A.; Ikeda, H.; Ikeda, T.; Mihara, H.; Ueno, A. Alizarin Yellow-Modified β-cyclodextrin as a Guest-Responsive Absorption Change Sensor. Anal. Chem. 1997, 69, 659–663. DOI: 10.1021/ac960727z.
  • Dubinin, A. G.; Li, F.; Li, Y.; Yu, J. A Solid-State Immobilized Enzyme Polymer Membrane Microelectrode for Measuring Lactate-Ion Concentration. Bioelectrochem. Bioenerg. 1991, 25, 131–135. DOI: 10.1016/0022-0728(91)85586-E.
  • Tapec, R.; Zhao, X. J.; Tan, W. Development of Organic Dye-Doped Silica Nanoparticles for Bioanalysis and Biosensors. J. Nanosci. Nanotechnol. 2002, 2, 405–409. DOI: 10.1166/jnn.2002.114.
  • Nakaminami, T.; Kuwabata, S.; Yoneyama, H. Electrochemical Oxidation of Cholesterol Catalyzed by Cholesterol Oxidase with Use of an Artificial Electron Mediator. Anal. Chem. 1997, 69, 2367–2372. DOI: 10.1021/ac960996p.
  • Charpentier, L.; El Murr, N. Amperometric Determination of Cholesterol in Serum with Use of a Renewable Surface Peroxidase Electrode. Anal. Chim. Acta. 1995, 318, 89–93. DOI: 10.1016/0003-2670(95)00311-8.
  • Piechotta, G.; Albers, J.; Hintsche, R. Novel Micromachined Silicon Sensor for Continuous Glucose Monitoring. Biosens. Bioelectron. 2005, 21, 802–808. DOI: 10.1016/j.bios.2005.02.008.
  • Peng, Y.; Wei, C. W.; Liu, Y. N.; Li, J. Nafion Coating the Ferrocenylalkanethiol and Encapsulated Glucose Oxidase Electrode for Amperometric Glucose Detection. Analyst. 2011, 136, 4003–4007. DOI: 10.1039/C1AN15292K.
  • Matsumoto, T.; Furusawa, M.; Fujiwara, H.; Matsumoto, Y.; Ito, N. A Micro-Planar Amperometric Glucose Sensor Unsusceptible to Interference Species. Sens. Actuators, B. 1998, 49, 68–72. DOI: 10.1016/S0925-4005(98)00145-2.
  • Zhang, Y.; Hu, Y.; Wilson, G. S.; Moatti-Sirat, D.; Poitout, V.; Reach, G. Elimination of the Acetaminophen Interference in an Implantable Glucose Sensor. Anal. Chem. 1994, 66, 1183–1188. DOI: 10.1021/ac00079a038.
  • Pauliukaite, R.; Brett, C. M. Characterization of Novel Glucose Oxysilane Sol–Gel Electrochemical Biosensors with Copper Hexacyanoferrate Mediator. Electrochim. Acta. 2005, 50, 4973–4980. DOI: 10.1016/j.electacta.2005.01.060.
  • Qingwen, L.; Guoan, L.; Yiming, W.; Xingrong, Z. Immobilization of Glucose Oxidase in Sol–Gel Matrix and Its Application to Fabricate Chemiluminescent Glucose Sensor. Mater. Sci. Eng. C. 2000, 11, 67–70. DOI: 10.1016/S0928-4931(00)00130-2.
  • Choi, H. N.; Han, J. H.; Park, J.; Lee, J. M.; Lee, W. Y. Amperometric Glucose Biosensor Based on Glucose Oxidase Encapsulated in Carbon nanotube–Titania–Nafion Composite Film on Platinized Glassy Carbon Electrode. Electroanalysis. 2007, 19, 1757–1763. DOI: 10.1002/elan.200703958.
  • Chen, X.; Matsumoto, N.; Hu, Y.; Wilson, G. S. Electrochemically Mediated Electrodeposition/Electropolymerization to Yield a Glucose Microbiosensor with Improved Characteristics. Anal. Chem. 2002, 74, 368–372. DOI: 10.1021/ac015628m.
  • Murphy, L. J. Reduction of Interference Response at a Hydrogen Peroxide Detecting Electrode Using Electropolymerized Films of Substituted Naphthalenes. Anal. Chem. 1998, 70, 2928–2935. DOI: 10.1021/ac971182r.
  • Davis, F.; Higson, S. P. Polymers in Biosensors. In Biomedical Polymers; Jenkins, M., Ed.; Woodhead Publishing Ltd: Cambridge, UK, 2007; pp 174–196.
  • Vadgama, P.; Crump, P. W. Biosensors: Recent Trends. A Review. Analyst. 1992, 117, 1657–1670. DOI: 10.1039/AN9921701657.
  • Gunasingham, H.; Teo, P. Y.; Lai, Y. H.; Tan, S. G. Chemically Modified Cellulose Acetate Membrane for Biosensor Applications. Biosens. 1989, 4, 349–359. DOI: 10.1016/0265-928X(89)80001-X.
  • Yang, Y. L.; Tseng, T. F.; Lou, S. L., (2007, August). Using MPTMS as Permselective Membranes of Biosensors. In Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE (pp. 6624–6627). IEEE, Lyon, France.
  • Nakabayashi, Y.; Wakuda, M.; Imai, H. Amperometric Glucose Sensors Fabricated by Electrochemical Polymerization of Phenols on Carbon Paste Electrodes Containing Ferrocene as an Electron Transfer Mediator. Anal. Sci. 1998, 14, 1069–1076. DOI: 10.2116/analsci.14.1069.
  • Nakabayashi, Y.; Yoshikawa, H. Amperometric Biosensors for Sensing of Hydrogen Peroxide Based on Electron Transfer between Horseradish Peroxidase and Ferrocene as a Mediator. Anal. Sci. 2000, 16, 609–613. DOI: 10.2116/analsci.16.609.
  • Farrington, A. M.; Slater, J. M. Prediction and Characterization of the Charge/Size Exclusion Properties of Over‐Oxidized Poly (Pyrrole) Films. Electroanalysis. 1997, 9, 843–847. DOI: 10.1002/elan.1140091108.
  • Spurlock, L. D.; Jaramillo, A.; Praserthdam, A.; Lewis, J.; Brajter-Toth, A. Selectivity and Sensitivity of Ultrathin Purine-Templatedoveroxidizedpolypyrrole Film Electrodes. Anal. Chim. Acta. 1996, 336, 37–46. DOI: 10.1016/S0003-2670(96)00361-3.
  • Vidal, J. C.; Garcı́a, E.; Castillo, J. R. In Situ Preparation of a Cholesterol Biosensor: Entrapment of Cholesterol Oxidase in an Overoxidized Polypyrrole Film Electrodeposited in a Flow System: Determination of Total Cholesterol in Serum. Anal. Chim. Acta. 1999, 385, 213–222. DOI: 10.1016/S0003-2670(98)00838-1.
  • Wang, J. Permselective Coatings for Amperometricbiosensing. In Biosensors and Chemical Sensors: Optimizing Performance through Polymeric Materials; Edelman, P. G., Wang, J., Eds.; American Chemical Society: Washington, DC (United States), 1992; pp 125–132.
  • Park, S.; Boo, H.; Chung, T. D. Electrochemical Non-Enzymatic Glucose Sensors. Anal. Chim. Acta. 2006, 556, 46–57. DOI: 10.1016/j.aca.2005.05.080.
  • Alexander, S.; Baraneedharan, P.; Balasubrahmanyan, S.; Ramaprabhu, S. Modified Graphene Based Molecular Imprinted Polymer for Electrochemical Non-Enzymatic Cholesterol Biosensor. Eur. Polym. J. 2017, 86, 106–116. DOI: 10.1016/j.eurpolymj.2016.11.024.
  • Arya, S. K.; Datta, M.; Malhotra, B. D. Recent Advances in Cholesterol Biosensor. Biosens. Bioelectron. 2008, 23, 1083–1100. DOI: 10.1016/j.bios.2007.10.018.
  • https://www.sensorsmag.com/components/strong-growth-predicted-for-biosensors-market# ( accessed Jan 25, 2018).
  • Lundgren, J. S.; Heitz, M. P.; Bright, F. V. Dynamics of Acrylodan-Labeledbovine and Human Serum Albumin Sequestered within aerosol-OT Reverse Micelles. Anal. Chem. 1995, 67, 3775–3781. DOI: 10.1021/ac00116a025.
  • Bhambi, M.; Pundir, C. S. Preparation of Oxygen Meter Based Biosensor for Determination of Triglyceride in Serum. Sens. Transducers. ISSN 1726-5479, 2006, 67, 561–567.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.