1,105
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Polymer membranes for biofouling mitigation: a review

, &
Pages 1829-1854 | Received 29 Sep 2018, Accepted 20 Jan 2019, Published online: 18 Feb 2019

References

  • Lu, X.; Bian, X.; Shi, L. Preparation and Characterization of NF Composite Membrane. J. Membr. Sci. 2002, 210, 3–11. DOI: 10.1016/S0376-7388(02)00120-5.
  • Bruggen, B. V.; Vandecasteele, C. Removal of Pollutants from Surface Water and Groundwater by Nanofiltration: Overview of Possible Applications in the Drinking Water Industry. Environ. Pollut. 2003, 22, 435–445. DOI: 10.1016/S0269-7491(02)00308-1.
  • Conlon, W. J.; McClellan, S. A. Membrane Softening: A Treatment Process Comes of Age. J. Am. Water Works Assoc. 1989, 81, 47–51. DOI: 10.1002/j.1551-8833.1989.tb03306.x.
  • Schaep, J.; Bruggen, B. V.; Uytterhoeven, S.; Croux, R.; Vandecasteele, C.; Wilms, D.; Houtte, E. V.; Vanlerberghe, F. Removal of Hardness from Groundwater by Nanofiltration. Desalination. 1998, 119, 295–301. DOI: 10.1016/S0011-9164(98)00172-6.
  • Zhu, L. P.; Zhang, X. X.; Xu, L.; Du, C. H.; Zhu, B. K.; Xu, Y. Y. Improved Protein Adsorption Resistance of Polyethersulfone Membranes via Surface Segregation of Ultrahigh Molecular Weight Poly(Styrene-Alt-Maleic Anhydride). Colloids Surf. B. 2007, 57, 189–197. DOI: 10.1021/ma052520q.
  • Wang, X.; Husson, S. M.; Qian, X.; Wickramasinghe, S. R. Inverse Colloidal Crystal Microfiltration Membranes. J. Membr. Sci. 2010, 365, 302–310. DOI: 10.1016/j.memsci.2010.09.020.
  • Stoller, M.;. Effective Fouling Inhibition by Critical Flux Based Optimization Methods on a NF Membrane Module for Olive Mill Wastewater Treatment. Chem. Eng. J. 2011, 168, 1140–1148. DOI: 10.1016/j.cej.2011.01.098.
  • Roudman, A. R.; DiGiano, F. A. Surface Energy of Experimental and Commercial Nanofiltration Membranes: Effects of Wetting and Natural Organic Matter Fouling. J. Membr. Sci. 2000, 175, 61–73. DOI: 10.1016/S0376-7388(00)00409-9.
  • Celik, E.; Park, H.; Choi, H.; Choi, H. Carbon Nanotube Blended Polyethersulfone Membranes for Fouling Control in Water Treatment. Water Res. 2011, 45, 274–282. DOI: 10.1016/j.watres.2010.07.060.
  • Chenar, M. P.; Soltanieh, M.; Matsuura, T.; Tabe-Mohammadi, A.; Feng, C. Gas Permeation Properties of Commercial Polyphenylene Oxide and Cardo-Type Polyimide Hollow Fiber Membranes. Sep. Purif. Technol. 2006, 51, 359–366. DOI: 10.1016/j.seppur.2006.02.018.
  • Lin, C. L.; Flowers, D. L.; Liu, P. K. T. Characterization of Ceramic Membranes II. Modified Commercial Membranes with Pore Size under 40 Å. J. Membr. Sci. 1994, 92, 45–58. DOI: 10.1016/0376-7388(94)80012-X.
  • Chenar, M. P.; Soltanieh, M.; Matsuura, T.; Tabe-Mohammadi, A.; Khulbe, K. C. The Effect of Water Vapor on the Performance of Commercial Polyphenylene Oxide and Cardo-Type Polyimide Hollow Fiber Membranes in CO2/CH4 Separation Applications. J. Membr. Sci. 2006, 285, 265–271. DOI: 10.1016/j.memsci.2006.08.028.
  • Bolong, N.; Ismail, A. F.; Salim, M. R.; Rana, D.; Matsuura, T. Development and Characterization of Novel Charged Surface Modification Macromolecule to Polyethersulfone Hollow Fiber Membrane with Polyvinyl Pyrrolidone and Water. J. Membr. Sci. 2009, 331, 40–49. DOI: 10.1016/j.memsci.2009.01.008.
  • Bodalo, A.; Gómez, J. L.; Gómez, E.; Leon, G.; Tejera, M. Sulfonated Polyethersulfone Membranes in the Desalination of Aqueous Solutions. Desalination. 2004, 168, 277–282. DOI: 10.1016/j.desal.2004.07.009.
  • Han, J.; Lee, W.; Choi, J. M.; Patel, R.; Min, B. R. Characterization of Polyethersulfone/Polyimide Blend Membranes Prepared by a Dry/Wet Phase Inversion: Precipitation Kinetics, Morphology and Gas Separation. J. Membr. Sci. 2010, 351, 141–148. DOI: 10.1016/j.memsci.2010.01.038.
  • Obaid, M.; Tolba, G. M.; Motlak, M.; Fadali, O. A.; Khalil, K. A.; Almajid, A. A.; Barakat, N. A. Effective Polysulfone Amorphous SiO NPs Electrospun Nanofiber Membrane for High Flux Oil/Water Separation. Chem. Eng. J. 2015, 279, 631–638. DOI: 10.1016/j.cej.2015.05.028.
  • Gupta, Y.; Hellgardt, K.; Wakeman, R. J. Enhanced Permeability of Polyaniline Based Nano-Membranes for Gas Separation. J. Membr. Sci. 2006, 282, 60–70. DOI: 10.1016/j.memsci.2006.05.014.
  • Yurekli, Y.;. Removal of Heavy Metals in Wastewater by Using Zeolitenano-Particles Impregnated Polysulfone Membranes. J. Hazard. Mater. 2016, 309, 53–64. DOI: 10.1016/j.jhazmat.2016.01.064.
  • Cecopierigomez, M. L.; Alquisira, J. P.; Domínguez, J. M. On the Limits of Gas Separation in CO2/CH4, N2/CH4 and CO2/N2 Binary Mixtures Using Polyimide Membranes. J. Membr. Sci. 2007, 293, 53–65. DOI: 10.1016/j.memsci.2007.01.034.
  • Du, N. Y.; Park, H. B.; Dal-Cin, M. M.; Guiver, M. D. Advances in High Permeability Polymeric Membrane Materials for CO2 Separations. Energy Environ. Sci. 2012, 5, 7306–7322. DOI: 10.1039/C1EE02668B.
  • Hirayama, Y.; Kase, Y.; Tanihara, R.; Sumiyama, Y.; Kusuki, Y.; Haraya, K. Permeation Properties to CO2 and N2 of Poly(Ethylene Oxide)- Containing and Crosslinked Polymer Films. J. Membr. Sci. 1999, 160, 87–99. DOI: 10.1016/S0376-7388(99)00080-0.
  • Potreck, J.; Nijmeijer, K.; Kosinski, T.; Wessling, M. Mixed Water Vapor/Gas Transport through the Rubbery Polymer PEBAX (R) 1074. J. Membr. Sci. 2009, 338, 11–16. DOI: 10.1016/j.memsci.2009.03.051.
  • Husain, S.; Koros, W. J. Mixed Matrix Hollow Fiber Membranes Made with Modified HSSZ-13 Zeolite in Polyetherimide Polymer Matrix for Gas Separation. J. Membr. Sci. 2007, 288, 195–207. DOI: 10.1016/j.memsci.2006.11.016.
  • Dai, Y.; Johnson, J. R.; Karvan, O.; Sholl, D. S.; Koros, W. J. Ultem®/ZIF-8 Mixed Matrix Hollow Fiber Membranes for CO2/N2 Separations. J. Membr. Sci. 2012, 401–402, 76–82. DOI: 10.1016/j.memsci.2012.01.044.
  • Park, H. B.; Jung, C. H.; Lee, Y. M.; Hill, A. J.; Pas, S. J.; Mudie, S. T.; Wagner, E. V.; Freeman, B. D.; Cookson, D. J. Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions. Science. 2007, 318, 254–258. DOI: 10.1126/science.1146744.
  • Kim, S.; Han, S. H.; Lee, Y. M. Thermally Rearranged (TR) Polybenzoxazole Hollow Fiber Membranes for CO2 Capture. J. Membr. Sci. 2012, 403, 169–178. DOI: 10.1016/j.memsci.2012.02.041.
  • Andrew, S. L.; Stevens, G. W.; Kentish, S. E. Facilitated Transport Behavior of Humidified Gases through Thin-Film Composite Polyamide Membranes for Carbon Dioxide Capture. J. Membr. Sci. 2013, 429, 349–354. DOI: 10.1016/j.memsci.2012.11.047.
  • Wang, T.; Yang, Y.; Zheng, J.; Zhang, Q.; Zhang, S. A Novel Highly Permeable Positively Charged Nanofiltration Membrane Based on A Nanoporous Hyper-Crosslinked Polyamide Barrier Layer. J. Membr. Sci.. 2013, 448, 180–189. DOI: 10.1016/j.memsci.2013.08.012.
  • Bauman, M.; Kosak, A.; Lobnik, A.; Petrinic, I.; Luxbacher, T. Nanofiltration Membranes Modified with Alkoxysilanes: Surface Characterization Using Zeta-Potential. Colloids Surf. A Physicochem. Eng. Asp. 2013, 422, 110–117. DOI: 10.1016/j.colsurfa.2013.01.005.
  • Favre, E.;. Membrane Processes and Post Combustion Carbon Dioxide Capture: Challenges and Prospects. Chem. Eng. J. 2011, 171, 782–793. DOI: 10.1016/j.cej.2011.01.010.
  • Zhao, W.; He, G.; Nie, F.; Zhang, L.; Feng, H.; Liu, H. Membrane Liquid Loss Mechanism of Supported Ionic Liquid Membrane for Gas Separation. J. Membr. Sci. 2012, 411, 73–80. DOI: 10.1016/j.memsci.2012.04.016.
  • Oatley, D. L.; Llenas, L.; Perez, R.; Williams, P. M.; Martinez-Llado, X.; Rovira, M. Review of the Dielectric Properties of Nanofiltration Membranes and Verification of the Single Oriented Layer Approximation. Adv. Colloid Interface Sci. 2012, 173, 1–11. DOI: 10.1016/j.cis.2012.02.001.
  • Fang, Y.; Bian, L.; Bi, Q.; Li, Q.; Wang, X. Evaluation of the Pore Size Distribution of Aforward Osmosis Membrane in Three Different Ways. J. Membr. Sci. 2014, 454, 390–397. DOI: 10.1016/j.memsci.2013.12.046.
  • Qian, H.; Zheng, J.; Zhang, S. Preparation of Microporous Polyamide Networks for Carbon Dioxide Capture and Nanofiltration. Polymer. 2013, 54, 557–564. DOI: 10.1016/j.polymer.2012.12.005.
  • Carvalho, A. L.; Maugeri, F.; Silva, V.; Hernández, A.; Palacio, L.; Pradanos, P. AFM Analysis of the Surface of Nanoporous Membranes: Application to the Nanofiltration of Potassium Clavulanate. J. Membr. Sci. 2011, 46, 3356–3369. DOI: 10.1007/s10853-010-5224-7.
  • Johnson, D. J.; Al Malek, S. A.; Al-Rashdi, B. A. M.; Hilal, N. Atomic Force Microscopy of Nanofiltration Membranes: Effect of Imaging Mode and Environment. J. Membr. Sci. 2012, 389, 486–498. DOI: 10.1016/j.memsci.2011.11.023.
  • Misdan, N.; Lau, W. J.; Ismail, A. F.; Matsuura, T.; Rana, D. Study on the Thin Film Composite Poly(Piperazine-Amide) Nanofiltration Membrane: Impacts of Physicochemical Properties of Substrate on Interfacial Polymerization Formation. Desalination. 2014, 344, 198–205. DOI: 10.1016/j.desal.2014.03.036.
  • Stawikowska, J.; Livingston, A. G. Assessment of Atomic Force Microscopy Forcharacterisation of Nanofiltration Membranes. J. Membr. Sci. 2013, 425–426, 58–70. DOI: 10.1016/j.memsci.2012.08.006.
  • Garcia-Martin, N.; Silva, V.; Carmona, F. J.; Palacio, L.; Hernandez, A.; Prádanos, P. Pore Size Analysis from Retention of Neutral Solutes through Nanofiltration Membranes: The Contribution of Concentration–Polarization. Desalination. 2014, 344, 1–11. DOI: 10.1016/j.desal.2014.02.038.
  • Kiso, Y.; Muroshige, K.; Oguchi, T.; Hirose, M.; Ohara, T.; Shintani, T. Pore Radius Estimation Based on Organic Solute Molecular Shape and Effects of Pressure on Pore Radius for a Reverse Osmosis Membrane. J. Membr. Sci. 2011, 369, 290–298. DOI: 10.1016/j.memsci.2010.12.005.
  • Oatley, D. L.; Llenas, L.; Aljohani, N. H. M.; Williams, P. M.; Martinez-Lladó, X.; Rovira, M.; de Pablo, J. Investigation of the Dielectric Properties of Nanofiltration Membranes. Desalination. 2013, 315, 100–106. DOI: 10.1016/j.desal.2012.09.013.
  • Stawikowska, J.; Livingston, A. G. Nanoprobe Imaging Molecular Scale Pores in Polymeric Membranes. J. Membr. Sci. 2012, 413–414, 1–16. DOI: 10.1016/j.memsci.2012.02.033.
  • Cheng, S.; Oatley, D. L.; Williams, P. M.; Wright, C. J. Positively Charged Nanofiltration Membranes: Review of Current Fabrication Methods and Introduction of a Novel Approach. Adv. Colloid. Interface Sci. 2011, 164, 12–20. DOI: 10.1016/j.cis.2010.12.010.
  • Deon, S.; Fievet, P.; Doubad, C. O. Tangential Streaming Potential/Current Measurements for the Characterization of Composite Membranes. J. Membr. Sci. 2012, 423–424, 413–421. DOI: 10.1016/j.memsci.2012.08.038.
  • Rice, G.; Barber, A. R.; O’Connor, A. J.; Pihlajamaki, A.; Nystrom, M.; Stevens, G. W.; Kentish, S. E. The Influence of Dairy Salts on Nanofiltration Membrane Charge. J. Food Eng. 2011, 107, 164–172. DOI: 10.1016/j.jfoodeng.2011.06.028.
  • Lee, S.; Lee, E.; Elimelech, M.; Hong, S. Membrane Characterization by Dynamic Hysteresis: Measurements, Mechanisms, and Implications for Membrane Fouling. J. Membr. Sci. 2011, 366, 17–24. DOI: 10.1016/j.memsci.2010.09.024.
  • Luxbacher, T.;. Electrokinetic Characterization of Flat Sheet Membranes by Streaming Current Measurement. Desalination. 2006, 199, 376–377. DOI: 10.1016/j.desal.2006.03.085.
  • Xie, H.; Saito, T.; Hickner, M. A. Zeta Potential of Ion-Conductive Membranes by Streaming Current Measurements. Langmuir. 2011, 27, 4721–4727. DOI: 10.1021/la105120f.
  • Teixeira, M. R.; Rosa, M. J.; Nyström, M. The Role of Membrane Charge on Nanofiltration Performance. J. Membr. Sci. 2005, 265, 160–166. DOI: 10.1016/j.memsci.2005.04.046.
  • Kotrappanavar, N. S.; Hussain, A. A.; Abashar, M. E. E.; Al-Mutaz, I. S.; Aminabhavi, T. M.; Nadagouda, M. N. Prediction of Physical Properties of Nanofiltration Membranes for Neutral and Charged Solutes. Desalination. 2011, 280, 174–182. DOI: 10.1016/j.desal.2011.07.007.
  • Kumar, V. S.; Hariharan, K. S.; Mayya, K. S.; Han, S. Volume Averaged Reduced Order Donnan Steric Pore Model for Nanofiltration Membranes. Desalination. 2013, 322, 21–28. DOI: 10.1016/j.desal.2013.04.030.
  • Yang, G.; Shi, H.; Liu, W.; Xing, W.; Xu, N. Investigation of Mg2+/Li+ Separation by Nanofiltration. Chin. J. Chem. Eng. 2011, 19, 586–591. DOI: 10.1016/S1004-9541(11)60026-8.
  • Cadotte, J. E.; Petersen, R. J.; Larson, R. E.; Erickson, E. E. New Thin-Film Composite Seawater Reverse-Osmosis Membrane. Desalination. 1980, 32, 25–31. DOI: 10.1016/S0011-9164(00)86003-8.
  • Cadotte, J.; Forester, R.; Kim, M.; Petersen, R.; Stocker, T. Nanofiltration Membranes Broaden the Use of Membrane Separation Technology. Desalination. 1988, 70, 77–88. DOI: 10.1016/0011-9164(88)85045-8.
  • Lau, W. J.; Ismail, A. F.; Misdan, N.; Kassim, M. A. A Recent Progress in Thin Film Composite Membrane: A Review. Desalination. 2012, 287, 190–199. DOI: 10.1016/j.desal.2011.04.004.
  • Petersen, R. J.;. Composite Reverse-Osmosis and Nanofiltration Membranes. J. Membr. Sci. 1993, 83, 81–150. DOI: 10.1016/0376-7388(93)80014-O.
  • Rao, A. P.; Desai, N. V.; Rangarajan, R. Interfacially Synthesized Thin Film Composite RO Membranes for Seawater Desalination. J. Membr. Sci. 1997, 124, 263–272. DOI: 10.1016/S0376-7388(96)00252-9.
  • Roh, I. J.; Greenberg, A. R.; Khare, V. P. Synthesis and Characterization of Interfacially Polymerized Polyamide Thin Films. Desalination. 2006, 191, 279–290. DOI: 10.1016/j.desal.2006.03.004.
  • Ghosh, A. K.; Jeong, B. H.; Huang, X. F.; Hoek, E. M. V. Impacts of Reaction and Curing Conditions on Polyamide Composite Reverse Osmosis Membrane Properties. J. Membr. Sci. 2008, 311, 34–45. DOI: 10.1016/j.memsci.2007.11.038.
  • Drioli, E.; Giorno, L. Membrane Operations: Innovative Separations and Transformations; Wiley-VCH: USA, 2009.
  • Mulder, M. Basic Principles of Membrane Technology; Kluwer Academic Publishers: Netherlands, 1996. DOI: 10.1021/ja975504k.
  • Pinnau, I.; Freeman, B. D. Formation and Modification of Polymeric Membranes: Overview. ACS Symp. Ser. 2000, 744, 1–22. DOI: 10.1021/bk-2000-0744.ch001.
  • Liu, F.; Hashim, N. A.; Liu, Y. T.; Abed, M. R. M.; Li, K. Progress in the Production and Modification of PVDF Membranes. J. Membr. Sci. 2011, 375, 1–27. DOI: 10.1016/j.memsci.2011.03.014.
  • Sarada, T.; Sawyer, L. C.; Ostler, M. I. Three Dimensional Structure of Celgard® Microporous Membranes. J. Membr. Sci. 1983, 15, 97–113. DOI: 10.1016/S0376-7388(00)81364-2.
  • Sadeghi, F.; Developing of Microporous Polypropylene by Stretching. PhD Thesis, École polytechnique Montreal, 2007.
  • Zhu, W.; Zhang, X.; Zhao, C.; Wu, W.; Hou, J.; Xu, M. A Novel Polypropylene Microporous Film. Polym. Adv. Technol. 1996, 7, 743–748. DOI: 10.1002/(SICI)1099-1581(199609)7:9<743::AID-PAT548>3.0.CO;2-W.
  • Trommer, K.; Morgenstern, B. Non Rigid Microporous PVC Sheets: Preparation and Properties. J. Appl. Polym. Sci. 2010, 115, 2119–2126. DOI: 10.1002/app.31305.
  • Sadeghi, F.; Ajji, A.; Carreau, P. J. Analysis of Microporous Membranes Obtained from Polypropylene Films by Stretching. J. Membr. Sci.. 2007, 292, 62–71. DOI: 10.1016/j.memsci.2007.01.023.
  • Sadeghi, F.; Ajji, A.; Carreau, P. J. Microporous Membranes Obtained from Polypropylene Blends with Superior Permeability Properties. J. Polym. Sci. Part B Polym. Phys. 2008, 46, 148–157. DOI: 10.1002/polb.21350.
  • Sadeghi, F.; Tabatabaei, S. H.; Ajji, A.; Carreau, P. J. Effect of PVDF Characteristics on Extruded Film Morphology and Porous Membranes Feasibility by Stretching. J. Polym. Sci. Part B Polym. Phys. 2009, 47, 1219–1229. DOI: 10.1002/polb.21725.
  • Toimil-Molares, M. E.;. Characterization and Properties of Micro- and Nanowires of Controlled Size, Composition, and Geometry Fabricated by Electrodeposition and Ion-Track Technology. Beilstein J. Nanotechnol. 2012, 3, 860–883. DOI: 10.3762/bjnano.3.97.
  • Fleischer, R. L.; Price, P. B.; Walker, R. M. Nuclear Tracks in Solids: Principles and Applications; University of California Press: Berkeley, 1975.
  • Komaki, Y.; Tsujimura, S. Growth of Fine Holes in Polyethylenenaphthalate Film Irradiated by Fission Fragments. J. Appl. Phys. 1976, 47, 1355–1358. DOI: 10.1063/1.322840.
  • Komaki, Y.; Ishikawa, N.; Sakurai, T. Growth of Fine Holes in Polyethylenenaphthalate Film Irradiated by Fission Fragments. Radiat. Meas. 1995, 24, 193–196. DOI: 10.1063/1.3228.
  • Starosta, W.; Wawszczak, D.; Sartowska, B.; Buczkowski, M. Investigations of Heavy Ion Tracks in Polyethylene Naphthalate Films. Radiat. Meas. 1999, 31, 149–152. DOI: 10.1016/S1350-4487(99)00184-5.
  • Shirkova, V. V.; Tretyakova, S. P. Physical and Chemical Basis for the Manufacturing of Fluoropolymer Track Membranes. Radiat. Meas. 1997, 28, 791–798. DOI: 10.1016/S1350-4487(97)00186-8.
  • Prince, J. A.; Singh, G.; Rana, D.; Matsuura, T.; Anbharasi, V.; Shanmugasundaram, T. S. Preparation and Characterization of Highly Hydrophobic Poly(Vinylidene Fluoride) – Clay Nanocomposite Nanofiber Membranes (PVDF–Clay NNMs) for Desalination Using Direct Contact Membrane Distillation. J. Membr. Sci. 2012, 397–398, 80–86. DOI: 10.1016/j.memsci.2012.01.012.
  • Lalia, B. S.; Guillen-Burrieza, E.; Arafat, H. A.; Hashaikeh, R. Fabrication and Characterization of Polyvinylidenefluoride-Co-Hexafluoropropylene (PVDF-HFP) Electrospun Membranes for Direct Contact Membrane Distillation. J. Membr. Sci. 2013, 428, 104–115. DOI: 10.1016/j.memsci.2012.10.061.
  • Gopal, R.; Kaur, S.; Ma, Z.; Chan, C.; Ramakrishna, S.; Matsuura, T. Electrospun nanofibrous filtration membrane. J. Membr. Sci. 2006, 281, 581–586. DOI: 10.1016/j.memsci.2006.04.026.
  • Bhardwaj, N.; Kundu, S. C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347. DOI: 10.1016/j.biotechadv.2010.01.004.
  • Feng, C.; Khulbe, K. C.; Matsuura, T.; Gopal, R.; Kaur, S.; Ramakrishna, S.; Khayet, M. Production of Drinkingwaterfrom Saline Waterbyair-Gap Membrane Distillation Using Polyvinylidene Fluoride Nanofiber Membrane. J. Membr. Sci. 2008, 311, 1–6. DOI: 10.1016/j.memsci.2007.12.026.
  • Khayet, M.; Matsuura, T. Formation of Nano-Fibre MD Membranes. In Membrane Distillation: Principles and Applications; Becky, L. Eds.; Elsevier: Oxford, 2011; pp 163–187.
  • Kaur, S.; Rana, D.; Matsuura, T.; Sundarrajan, S.; Ramakrishna, S. Preparation and Characterization of Surface Modified Electrospun Membranes for Higher Filtration Flux. J. Membr. Sci. 2012, 390–391, 235–242. DOI: 10.1016/j.memsci.2011.11.045.
  • Maab, H.; Francis, L.; Al-Saadi, A.; Aubry, C.; Ghaffour, N.; Amy, G.; Nunes, S. P. Synthesis and Fabrication of Nanostructured Hydrophobic Polyazole Membranes for Low-Energy Water Recovery. J. Membr. Sci. 2012, 423–424, 11–19. DOI: 10.1016/j.memsci.2012.07.009.
  • Wang, R.; Liu, Y.; Li, B.; Hsiao, B. S.; Chu, B. Electrospun Nanofibrous Membranes for High Flux Microfiltration. J. Membr. Sci. 2012, 392–393, 167–174. DOI: 10.1016/j.memsci.2011.12.019.
  • Zhao, Z.; Zheng, J.; Wang, M.; Zhang, H.; Han, C. C. High Performance Ultrafiltration Membrane Based on Modified Chitosan Coating and Electrospun Nanofibrous PVDF Scaffolds. J. Membr. Sci. 2012, 394–395, 209–217. DOI: 10.1016/j.memsci.2011.12.043.
  • Kaur, S.; Sundarrajan, S.; Rana, D.; Matsuura, T.; Ramakrishna, S. Influence of Electrospun Fiber Size on the Separation Efficiency of Thin Film Nanofiltration Composite Membrane. J. Membr. Sci. 2012, 392–393, 101–111. DOI: 10.1016/j.memsci.2011.12.005.
  • Kaur, S.; Barhate, R.; Sundarrajan, S.; Matsuura, T.; Ramakrishna, S. Hot Pressing of Electrospun Membrane Composite and Its Influence on Separation Performance on Thin Film Composite Nanofiltration Membrane. Desalination. 2011, 279, 201–209. DOI: 10.1016/j.desal.2011.06.009.
  • Liu, J.; Kumar, S. Microscopic Polymer Cups by Electrospinning. Polymer. 2005, 46, 3211–3214. DOI: 10.1016/j.polymer.2004.11.116.
  • Zong, X.; Ran, S.; Fang, D.; Hsiao, B. S.; Chu, B. Control of Structure, Morphology and Property in Electrospun Poly (Glycolide-Co-Lactide) Non-Woven Membranes via Post-Draw Treatments. Polymer. 2003, 44, 4959–4967. DOI: 10.1016/S0032-3861(03)00464-6.
  • Kenawy, R.; Layman, J. M.; Watkins, J. R.; Bowlin, G. L.; Matthews, J. A.; Simpson, D. G.; Wnek, G. E. Electrospinning of Poly (Ethylene-Co-Vinyl Alcohol) Fibers. Biomaterials. 2003, 24, 907–913. DOI: 10.1016/S0142-9612(02)00422-2.
  • Yoshimoto, H.; Shin, Y. M.; Terai, H.; Vacanti, J. P. A Biodegradable Nanofiber Scaffold by Electrospinning and Its Potential for Bone Tissue Engineering. Biomaterials. 2003, 24, 2077–2082. DOI: 10.1016/S0142-9612(02)00635-X.
  • Sun, T.; Mai, S.; Norton, D.; Haycock, J. W.; Ryan, S.; Mac Neil, A. J. Self Organization of Skin Cells in Three Dimensional Electrospun Polystyrene Scaffolds. Tissue Eng. 2005, 11, 1023–1033. DOI: 10.1089/ten.2005.11.1023.
  • Khil, M. S.; Cha, D. I.; Kim, H. Y.; Kim, I. S. N.; Bhattarai, N. Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing. J. Biomed. Mater. Res. B. 2003, 67, 675–679. DOI: 10.1002/jbm.b.10058.
  • Boland, E. D.; Telemeco, T. A.; Simpson, D. G.; Wnek, G. E.; Bowlin, G. L. Utilizing Acid Pretreatment and Electrospinning to Improve Biocompatibility of Poly (Glycolic Acid) for Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2004, 71B, 144–152. DOI: 10.1002/jbm.b.30105.
  • Jia, J.; Duan, Y. Y.; Wang, S. H.; Zhang, S. F.; Wang, Z. Y. Preparation and Characterization of Antibacterial Silver-Containing Nanofibers for Wound Dressing Applications. J. US-China Med. Sci. 2007, 4, 52–54. DOI: 10.1504/IJNP.2015.070346.
  • Kim, E. S.; Yu, Q.; Deng, B. Plasma Surface Modification of Nanofiltration (NF) Thinfilm Composite (TFC) Membranes to Improve Anti Organic Fouling. Appl. Surf. Sci. 2011, 257, 9863–9871. DOI: 10.1016/j.apsusc.2011.06.059.
  • Wang, X.; Wei, J.; Dai, Z.; Zhao, K.; Zhang, H. Preparation and Characterization of Negatively Charged Hollow Fiber Nanofiltration Membrane by Plasma-Induced Graft Polymerization. Desalination. 2012, 286, 138–144. DOI: 10.1016/j.desal.2011.11.014.
  • Anonymous. Plasma Applications, What Is Plasma?; AST Products, Inc.: Billerica, USA, 2014.
  • Nady, N.; Franssen, M. C. R.; Zuilhof, H.; Mohy Eldin, M. S.; Boom, R.; Schroen, K. Modifi Cation Methods for Poly(Arylsulfone) Membranes: A Mini-Review Focusing on Surface Modification. Desalination. 2011, 275, 1–9. DOI: 10.1016/j.desal.2011.03.010.
  • Field, R. Membranes for Water Treatment; Wiley-VCH: Germany, 2010.
  • Baker, J.; Stephenson, T.; Dard, S.; Cote, P.; Stephenson, T.; Dard, S.; Cote, P. Characterisation of Fouling of Nanofiltration Membranes Used to Treat Surface Water. Environ. Technol. 1995, 16, 977–985. DOI: 10.1080/09593331608616335.
  • Kochkodan, V.; Hilal, N. A Comprehensive Review on Surface Modified Polymer Membranes for Biofouling Mitigation. Desalination. 2015, 356, 187–207. DOI: 10.1016/j.desal.2014.09.015.
  • Baek, Y.; Yu, J.; Kim, S. H.; Lee, S.; Yoon, J. Effect of Surface Properties of Reverse Osmosis Membranes on Biofouling Occurrence under Filtration Conditions. J. Membr. Sci. 2011, 382, 91–99. DOI: 10.1016/j.memsci.2011.07.049.
  • Kang, G. D.; Cao, Y. M. Development of Antifouling Reverse Osmosis Membranes for Water Treatment: A Review. Water Res. 2012, 46, 584–600. DOI: 10.1016/j.watres.2011.11.041.
  • Ng, L. Y.; Mohammad, A. W.; Ng, C. Y. A Review on Nanofiltration Membrane Fabrication and Modification Using Polyelectrolytes: Effective Ways to Develop Membrane Selective Barriers and Rejection Capability. Adv. Colloid Interface Sci. 2013, 197–198, 85–107. DOI: 10.1016/j.cis.2013.04.004.
  • Yu, D. G.; Teng, M. Y.; Chou, W. L.; Yang, M. C. Characterization and Inhibitory Effect of Antibacterial PAN-based Hollow Fiber Loaded with Silver Nitrate. J. Membr. Sci. 2003, 225, 115–123. DOI: 10.1016/j.memsci.2003.08.010.
  • Zhao, G. J.; Stevens, S. E. Multiple Parameters for the Comprehensive Evaluation of the Susceptibility of Escherichia Coli to the Silver Ion. Biometals. 1998, 11, 27–32. PMID: 9450315 DOI: 10.1023/A:1009253223055.
  • Trevors, J. T.;. Silver Resistance and Accumulation in Bacteria. Enzym. Microb. Technol. 1987, 9, 331–333. DOI: 10.1016/0141-0229(87)90054-8.
  • Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O. A Mechanistic Study of the Antibacterial Effect of Silver Ions on Escherichia Coli and Staphylococcus Aureus. J. Biomed. Mater. Res. 2000, 52, 662–668. PMID: 11033548 DOI: 10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3.
  • de Lannoy, C. F.; Jassby, D.; Gloe, K.; Gordon, A. D.; Wiesner, M. R. Aquatic Biofouling Prevention by Electrically Charged Nanocomposite Polymer Thin Film Membranes. Environ. Sci. Technol. 2013, 47, 2760–2768. DOI: 10.1021/es3045168.
  • Yu, H.; Cao, Y.; Kang, G.; Liu, J.; Li, M.; Yuan, Q. Enhancing Antifouling Property of Polysulfone Ultrafiltration Membrane by Grafting Zwitterionic Copolymer via UV-initiated Polymerization. J. Membr. Sci. 2009, 342, 6–13. DOI: 10.1016/j.memsci.2009.05.041.
  • Hu, M. X.; Yang, Q.; Xu, Z. K. Enhancing the Hydrophilicity of Polypropylene Microporous Membranes by the Grafting of 2-Hydroxyethyl Methacrylate via a Synergistic Effect of Photoinitiators. J. Membr. Sci. 2006, 285, 196–205. DOI: 10.1016/j.memsci.2006.08.023.
  • Taniguchi, M.; Belfort, G. Low Protein Fouling Synthetic Membranes by UV-assisted Surface Grafting Modification: Varying Monomer Type. J. Membr. Sci. 2004, 231, 147–157. DOI: 10.1016/j.memsci.2003.11.013.
  • Pieracci, J.; Crivello, J. V.; Belfort, G. Increasing Membrane Permeability of UV-modified Poly(Ether Sulfone) Ultrafiltration Membranes. J. Membr. Sci. 2002, 202, 1–16. DOI: 10.1016/S0376-7388(01)00624-X.
  • Yu, H. Y.; Liu, L. Q.; Tang, Z. Q.; Yan, M. G.; Gu, J. S.; Wei, X. W. Mitigated Membrane Fouling in an SMBR by Surface Modification. J. Membr. Sci. 2008, 310, 409–417. DOI: 10.1016/j.memsci.2007.11.017.
  • Pasmore, M.; Todd, P.; Smith, S.; Baker, D.; Silverstein, J. A.; Coons, D.; Bowman, C. N. Effects of Ultrafiltration Membrane Surface Properties on Pseudomonas Aeruginosa Biofilm Initiation for the Purpose of Reducing Biofouling. J. Membr. Sci. 2001, 194, 15–32. DOI: 10.1016/S0376-7388(01)00468-9.
  • Gu, J. S.; Yu, H. Y.; Huang, L.; Tang, Z. Q.; Li, W.; Zhou, J.; Yan, M. G.; Wei, X. W. Chain-Length Dependence of the Antifouling Characteristics of the Glycopolymer-Modified Polypropylene Membrane in an SMBR. J. Membr. Sci. 2009, 326, 145–152. DOI: 10.1016/j.memsci.2008.09.043.
  • Rahimpour, A.; Madaeni, S. S.; Zereshki, S.; Mansourpanah, Y. Preparation and Characterization of Modified Nano-Porous PVDF Membrane with High Antifouling Property Using UV Photo-Grafting. Appl. Surf. Sci. 2009, 255, 7455–7461. DOI: 10.1016/j.apsusc.2009.04.021.
  • Kilduff, J. E.; Mattaraj, S.; Pieracci, J. P.; Belfort, G. Photochemical Modification of Poly(Ether Sulfone) and Sulfonated Poly(Sulfone) Nanofiltration Membranes for Control of Fouling by Natural Organic Matter. Desalination. 2000, 132, 133–142. DOI: 10.1016/S0011-9164(00)00142-9.
  • Tang, C. Y.; Chong, T. H.; Fane, A. G. Colloidal Interactions and Fouling of NF and RO Membranes: A Review. Adv. Colloid Interface. 2011, 164, 126–143. DOI: 10.1016/j.cis.2010.10.007.
  • Pendergast, M. M.; Hoek, E. M. A Review of Water Treatment Membrane Nanotechnologies. Energy Environ. Sci. 1946–1971, 2011(4). DOI: 10.1039/C0EE00541J.
  • Guillen, G.; Hoek, E. Modeling the Impacts of Feed Spacer Geometry on Reverse Osmosis and Nanofiltration Processes. Chem. Eng. J. 2009, 149, 221–231. DOI: 10.1016/j.cej.2008.10.030.
  • Holt, J. K.; Park, H. G.; Wang, Y.; Stadermann, M.; Artyukhin, A. B.; Grigoropoulos, C. P.; Noy, A.; Bakajin, O. Fast Mass Transport through Sub-2-Nanometer Carbon Nanotubes. Science. 2006, 312, 1034–1037. DOI: 10.1126/science.1126298.
  • Ulbricht, M.;. Advanced Functional Polymer Membranes. Polymer. 2006, 47, 2217–2262. DOI: 10.1016/j.polymer.2006.01.084.
  • Kar, S.; Bindal, R. C.; Tewari, P. K. Carbon Nanotube Membranes for Desalination and Water Purification: Challenges and Opportunities. Nano Today. 2012, 7, 385–389. DOI: 10.1016/j.nantod.2012.09.002.
  • Zimmerman, C. M.; Singh, A.; Koros, W. J. Tailoring Mixed Matrix Composite Membranes for Gas Separations. J. Membr. Sci. 1997, 137, 145–154. DOI: 10.1016/S0376-7388(97)00194-4.
  • Choi, J. H.; Jegal, J.; Kim, W. N. Fabrication and Characterization of Multi-Walled Carbon Nanotubes/Polymer Blend Membranes. J. Membr. Sci. 2006, 284, 406–415. DOI: 10.1016/j.memsci.2006.08.013.
  • Yang, H. Y.; Han, Z. J.; Yu, S. F.; Pey, K. L.; Ostrikov, K.; Karnik, R. Carbon Nanotube Membranes with Ultrahigh Specific Adsorption Capacity for Water Desalination and Purification. Nat. Commun. 2013, 4, 1–8. DOI: 10.1038/ncomms3220.
  • Van der Bruggen, B.; Manttari, M.; Nyström, M. Drawbacks of Applying Nanofiltration and How to Avoid Them: A Review. Sep. Purif. Technol. 2008, 63, 251–263. DOI: 10.1016/j.seppur.2008.05.010.
  • Tsuru, T.; Sasaki, S.; Kamada, T.; Shintani, T.; Ohara, T.; Nagasawa, H.; Nishida, K.; Kanezashi, M.; Yoshioka, T. Multilayered Polyamide Membranes by Spray-Assisted 2-Step Interfacial Polymerization for Increased Performance of Trimesoyl Chloride (Tmc)/M-Phenylenediamine (Mpd)-Derived Polyamide Membranes. J. Membr. Sci. 2013, 446, 504–512. DOI: 10.1016/j.memsci.2013.07.031.
  • Abu Seman, M. N.; Khayet, M.; Hilal, N. Development of Antifouling Properties and Performance of Nanofiltration Membranes Modified by Interfacial Polymerization. Desalination. 2011, 273, 36–47. DOI: 10.1016/j.desal.2010.09.038.
  • Seman, M. N. A.; Khayet, M.; Hilal, N. Nanofiltration Thin-Film Composite Polyester Polyethersulfone-Based Membranes Prepared by Interfacial Polymerization. J. Membr. Sci. 2010, 348, 109–116. DOI: 10.1016/j.memsci.2009.10.047.
  • Li, Y.; Su, Y.; Dong, Y.; Zhao, X.; Jiang, Z.; Zhang, R.; Zhao, J. Separation Performance of Thinfilm Composite Nanofiltration Membrane through Interfacial Polymerization Using Different Amine Monomers. Desalination. 2014, 333, 59–65. DOI: 10.1016/j.desal.2013.11.035.
  • Li, X.; Cao, Y.; Yu, H.; Kang, G.; Jie, X.; Liu, Z.; Yuan, Q. A Novel Composite Nanofiltration Membrane Prepared with PHGH and TMC by Interfacial Polymerization. J. Membr. Sci. 2014, 466, 82–91. DOI: 10.1016/j.memsci.2014.04.034.
  • Namvar-Mahboub, M.; Pakizeh, M. Development of a Novel Thin Film Composite Membrane by Interfacial Polymerization on Polyetherimide/Modified SiO2 Support for Organic Solvent Nanofiltration. Sep. Purif. Technol. 2013, 119, 35–45. DOI: 10.1016/j.seppur.2013.09.003.
  • Wang, D.; Zou, W.; Li, L.; Wei, Q.; Sun, S.; Zhao, C. Preparation and Characterization of Functional Carboxylic Polyethersulfone Membrane. J. Membr. Sci. 2011, 374, 93–101. DOI: 10.1016/j.memsci.2011.03.021.
  • Shi, Q.; Su, Y.; Zhu, S.; Li, C.; Zhao, Y.; Jiang, Z. A Facile Method for Synthesis of Pegylated Polyethersulfone and Its Application in Fabrication of Antifouling Ultrafiltration Membrane. J. Membr. Sci. 2007, 303, 204–212. DOI: 10.1016/j.memsci.2007.07.009.
  • Choi, Y. C.; Shin, Y. M.; Lee, Y. H.; Lee, B. S.; Park, G. S.; Choi, W. B.; Lee, N. S.; Kim, J. M. Controlling the Diameter, Growth Rate, and Density of Vertically Aligned Carbon Nanotubessynthesized by Microwave Plasma-Enhanced Chemical Vapor Deposition. Appl. Phys. Lett. 2000, 76, 2367–2369. DOI: 10.1063/1.126348.
  • Holt, J. K.; Noy, A.; Huser, T.; Eaglesham, D.; Bakajin, O. Fabrication of a Carbon Nanotubeembedded Silicon Nitride Membrane for Studies of Nanometer-Scale Mass Transport. Nano Lett. 2004, 4, 2245–2250. DOI: 10.1021/nl048876h.
  • Das, R.; Ali, E. M.; Hamid, B. A. S.; Ramakrishna, S.; Zaira, Z. C. Carbon Nanotube Membranes for Water Purifi Cation: A Bright Future in Water Desalination. Desalination. 2014, 336, 97–109. DOI: 10.1016/j.desal.2013.12.026.
  • Atkinson, S.;. Nanofiltration Concentrates Coloured Wastewater and Produces Potable Water. Membr. Technol. 2002, 2002, 11–12. DOI: 10.1016/S0958-2118(02)07019-2.
  • Sun, D.; Xiwang, Z. Membrane Technology: Removing Contaminants in Wastewater. Filtr. Sep. 2007, 44, 14–16. DOI: 10.1016/s0015-1882(07)70213-6.
  • Vatanpour, V.; Madaeni, S. S.; Moradian, R.; Zinadini, S.; Astinchap, B. Novel Antibifouling Nanofiltration Polyethersulfone Membrane Fabricated from Embedding TiO2 Coated Multiwalled Carbon Nanotubes. Sep. Purif. Technol. 2012, 90, 69–82. DOI: 10.1016/j.seppur.2012.02.014.
  • Hou, J.; Dong, G.; Ye, Y.; Chen, V. Enzymatic Degradation of bisphenol-A with Immobilized Laccase on TiO2 Sol–Gel Coated PVDF Membrane. J. Membr. Sci. 2014, 469, 19–30. DOI: 10.1016/j.memsci.2014.06.027.
  • Marcucci, M.; Ciabatti, I.; Matteucci, A.; Vernaglione, G. Membrane Technologies Applied to Textile Wastewater Treatment. Ann. NY Acad. Sci. 2003, 984, 53–64. DOI: 10.1111/j.1749-6632.2003.tb05992.x.
  • Nabetani, H.; Iwamoto, S. Foods Food Ingredients. J. Jpn. 2004, 209, 80–82.
  • Ingham, C. J.; Ter Maat, J.; de Vos, W. M. Where Bio Meets Nano: The Many Uses for Nanoporous Aluminum Oxide in Biotechnology. Biotechnol. Adv. 2012, 30, 1089–1099. DOI: 10.1016/j.biotechadv.2011.08.005.
  • Gultepe, E.;. Nanoporous Inorganic Membranes or Coatings for Sustained Drug Delivery in Implantable Devices. Adv. Drug. Deliv. Rev. 2010, 62, 305–315. DOI: 10.1016/j.addr.2009.11.003.
  • Rubin, E. S.; Mantripragada, H.; Marks, A.; Versteeg, P.; Kitchin, J. The Outlook for Improved Carbon Capture Technology. Prog. Energy Combust. Sci. 2012, 38, 630–671. DOI: 10.1016/j.pecs.2012.03.003.
  • Eisaman, M. D.; Alvarado, L.; Larner, D.; Wang, P.; Garg, B.; Littau, K. A. CO2 Separation Using Bipolar Membrane Electrodialysis Energy. Environ. Sci. 2011, 4, 1319–1328. DOI: 10.1039/C0EE00303D.
  • Pientka, Z.; Peter, J.; Itkal, J.; Bakonyi, P. Application of Polymeric Membranes in Biohydrogen Purification and Storage. Curr. Biochem. Eng. 2014, 1, 99–105. DOI: 10.2174/2212711901999140522112914.
  • Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. DOI: 10.1016/S0266-3538(03)00178-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.