438
Views
7
CrossRef citations to date
0
Altmetric
Articles

Release of urea from cellulosic hydrogel coated urea granule: Modeling effect of crosslink density and pH triggering

, &
Pages 1914-1926 | Received 07 Dec 2018, Accepted 23 Feb 2019, Published online: 02 Apr 2019

References

  • IFA DATA. International Fertilizer Industry Application. http://ifadata.fertilizer.org/ucResult.aspx?temp=20180521101834 2017; (accessed Mar 28, 2018).
  • World fertilizer trends and outlook to 2020. Food and Agriculture Organization of United Nation. Rome. http://www.fao.org/3/a-i6895e.pdf 2017; (accessed May 30, 2018).
  • Richardson, D.; Felgate, H.; Watmough, N.; Thomson, A.; Baggs, E. Mitigating Release of the Potent Greenhouse Gas N2O from the Nitrogen Cycle–Could Enzymic Regulation Hold the Key? Trends Biotechnol. 2009, 27, 388–397. DOI: 10.1016/j.tibtech.2009.03.009.
  • Ostad-Ali-Askari, K.; Shayannejad, M.; Ghorbanizadeh-Kharazi, H. Artificial Neural Network for Modeling Nitrate Pollution of Groundwater in Marginal Area of Zayandeh-Rood River, Isfahan, Iran. KSCE J. Civ. Eng. 2017, 21(1), 134–140. DOI: 10.1007/s12205-016-0572-8.
  • Choudhury, A. T. M. A.; Kennedy, I. R. Nitrogen Fertilizer Losses from Rice Soils and Control of Environmental Pollution Problems. Commun. Soil Sci. Plant Anal. 2005, 36, 1625–1639. DOI: 10.1081/CSS-200059104.
  • Rahman, M. H.; Das, B. K.; Miah, M. A. J.; Ahmad, H. Fixation of Urea to Polyacrylic Acid and Nitrogen Release Behavior of the Product (Polyurea)-A Comparison with Urea and Control (Without Nitrogen Fertilizer). Asian J. Crop Sci. 2009, 1, 6–14. DOI: 10.3923/ajcs.2009.6.14.
  • Costa, M. M.; Cabral-Albuquerque, E. C.; Alves, T. L.; Pinto, J. C.; Fialho, R. L. Use of Polyhydroxybutyrate and Ethyl Cellulose for Coating of Urea Granules. J. Agri. Food Chem. 2013, 61, 9984–9991. DOI: 10.1021/jf401185y.
  • Li, Q.; Wu, S.; Ru, T.; Wang, L.; Xing, G.; Wang, J. Synthesis and Performance of Polyurethane Coated Urea as Slow/Controlled Release Fertilizer. J. Wuhan Univ. Technol. Mat. Sci. Edit. 2012, 27(1), 126–129. DOI: 10.1007/s11595-012-0421-7.
  • Muslim, S.; Salman; Fitriani, L.; Suharti, N.; Erizal, Z.; Febriyenti; Aldi, Y.; Akmal, D. Use of Bioblend Polystyrene/Starch for Coating Urea Granules as Slow Release Fertilizer. J. Chem. Pharm. Res. 2015, 7, 478–484.
  • Yang, Y. C.; Zhang, M.; Li, Y.; Fan, X. H.; Geng, Y. Q. Improving the Quality of Polymer-Coated Urea with Recycled Plastic, Proper Additives, and Large Tablets. J. Agric. Food Chem. 2012, 60, 11229–11237. DOI: 10.1021/jf302813g.
  • Jintakanon, N.; Opaprakasit, P.; Petchsuk, A.; Opaprakasit, M. Controlled-Release Materials for Fertilizer Based on Lactic Acid Polymers. Adv. Mat. Res. 2008, 55, 905–908.
  • Qiu, X.; Zhu, D.; Tao, S.; Chen, C.; Ren, X.; Hu, S. 1‐Naphthylacetic‐Acid‐Functionalized Polyacrylate‐Coated Urea with Dual Controlled‐Release Properties. J. Appl. Polym. Sci. 2013, 129, 559–567. DOI: 10.1002/app.38656.
  • Baptista, I.; Ritsema, C.; Geissen, V. Effect of Integrated Water-Nutrient Management Strategies on Soil Erosion Mediated Nutrient Loss and Crop Productivity in Cabo Verde Drylands. PloS one. 2015, 10(7), e0134244. DOI: 10.1371/journal.pone.0134244.
  • Guo, M.; Liu, M.; Zhan, F.; Wu, L. Preparation and Properties of a Slow-Release Membrane-Encapsulated Urea Fertilizer with Superabsorbent and Moisture Preservation. Ind. Eng. Chem. Res. 2005, 44, 4206–4211. DOI: 10.1021/ie0489406.
  • Liang, R.; Liu, M. Preparation and Properties of a Double-Coated Slow-Release and Water-Retention Urea Fertilizer. J. Agric. Food Chem. 2006, 54, 1392–1398. DOI: 10.1021/jf052582f.
  • Liang, R.; Liu, M. Preparation and Properties of Coated Nitrogen Fertilizer with Slow Release and Water Retention. Ind. Eng. Chem. Res. 2006, 45, 8610–8616. DOI: 10.1021/ie060705v.
  • Ni, B.; Liu, M.; Lü, S.; Xie, L.; Wang, Y. Environmentally Friendly Slow-Release Nitrogen Fertilizer. J. Agric. Food Chem. 2011, 59, 10169–10175. DOI: 10.1021/jf202131z.
  • Sarkar, D. J.; Singh, A. pH-triggered Release of Boron and Thiamethoxam from Boric Acid Crosslinked Carboxymethyl Cellulose Hydrogel Based Formulations. Polym. Plast. Technol. Eng. 2019, 58, 83–96.
  • Yang, Y.; Tong, Z.; Geng, Y.; Li, Y.; Zhang, M. Biobased Polymer Composites Derived from Corn Stover and Feather Meals as Double-Coating Materials for Controlled-Release and Water-Retention Urea Fertilizers. J. Agric. Food Chem. 2013, 61, 8166–8174. DOI: 10.1021/jf402519t.
  • Wang, Y.; Liu, M.; Ni, B.; Xie, L. κ-Carrageenan–Sodium Alginate Beads and Superabsorbent Coated Nitrogen Fertilizer with Slow-Release, Water-Retention, and Anticompaction Properties. Ind. Eng. Chem. Res. 2012, 51, 1413–1422. DOI: 10.1021/ie2020526.
  • Sarkar, D. J.; Singh, A.; Gaur, S. R.; Shenoy, A. V. Viscoelastic Properties of Borax Loaded CMC‐g‐cl‐poly (Aam) Hydrogel Composites and Their Boron Nutrient Release Behavior. J. Appl. Polym. Sci. 2016, 133, 43969. DOI: 10.1002/app.v133.38.
  • Ramírez-Fuentes, Y. S.; Bucio, E.; Burillo, G. Radiation-Induced Grafting of N-Isopropylacrylamide and Acrylic Acid onto Polypropylene Films by Two Step Method. Nucl. Instrum. Methods Phys. Res. B. 2007, 265(1), 183–186. DOI: 10.1016/j.nimb.2007.08.046.
  • Sarkar, D. J.; Singh, A. Base Triggered Release of Insecticide from Bentonite Reinforced Citric Acid Crosslinked Carboxymethyl Cellulose Hydrogel Composites. Carbohyd. Polym. 2017, 156, 303–311. DOI: 10.1016/j.carbpol.2016.09.045.
  • Sarkar, D. J.; Singh, A.; Mandal, P.; Kumar, A.; Parmar, B. S. Synthesis and Characterization of Poly (Cmc-G-Cl-Paam/Zeolite) Superabsorbent Composites for Controlled Delivery of Zinc Micronutrient: Swelling and Release Behavior. Polym. Plast. Technol. Eng. 2015, 54, 357–367. DOI: 10.1080/03602559.2014.958773.
  • Ritger, P. L.; Peppas, N. A. A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release. 1987, 5, 23–36. DOI: 10.1016/0168-3659(87)90034-4.
  • Gallagher, K. M.; Corrigan, O. I. Mechanistic Aspects of the Release of Levamisole Hydrochloride from Biodegradable Polymers. J. Control. Release. 2000, 69, 261–272.
  • Sarkar, D. J.; Kumar, J.; Shakil, N. A.; Walia, S. Release Kinetics of Controlled Release Formulations of Thiamethoxam Employing Nano-Ranged Amphiphilic PEG and Diacid Based Block Polymers in Soil. J. Environ. Sci. Health A Tox. Hazard. Subst. Environ. Eng. 2012, 47, 1701–1712. DOI: 10.1080/10934529.2012.687294.
  • Brown, J.; Hanley, S. L.; Pygall, S. R.; Avalle, P.; Williams, H. D.; Melia, C. D. In-Vitro Physical and Imaging Techniques to Evaluate Drug Release Mechanisms from Hydrophilic Matrix Tablets. In Hydrophilic Matrix Tablets for Oral Controlled Release, AAPS Advances in the Pharmaceutical Sciences Series 16; Timmins, P., Pygall, S. R., Melia, C. D., Eds.; Springer: London, Chapter 7, 2014; pp 165–190.
  • Ni, B.; Liu, M.; Lü, S. Multifunctional Slow-Release Urea Fertilizer from Ethylcellulose and Superabsorbent Coated Formulations. Chem. Eng. J. 2009, 155, 892–898. DOI: 10.1016/j.cej.2009.08.025.
  • Singh, A.; Sarkar, D. J.; Singh, A. K.; Parsad, R.; Kumar, A.; Parmar, B. S. Studies on Novel Nanosuperabsorbent Composites: Swelling Behavior in Different Environments and Effect on Water Absorption and Retention Properties of Sandy Loam Soil and Soil‐Less Medium. J. Appl. Polym. Sci. 2011, 20, 1448–1458. DOI: 10.1002/app.33263.
  • Turney, T. W.; Patti, A.; Gates, W.; Shaheen, U.; Kulasegaram, S. Formation of Glycerol Carbonate from Glycerol and Urea Catalysed by Metal Monoglycerolates. Green Chem. 2013, 15, 1925–1931. DOI: 10.1039/c3gc37028c.
  • Lee, P. I.;. Kinetics of Drug Release from Hydrogel Matrices. J. Control. Release. 1985, 2, 277–288.
  • Kim, S. W.; Bae, Y. H.; Okano, T. Hydrogels: Swelling, Drug Loading, and Release. Pharm. Res. 1992, 9(3), 283–290.
  • Mandal, N.; Datta, S. C.; Manjaiah, K. M.; Dwivedi, B. S.; Nain, L.; Kumar, R.; Aggarwal, P. Novel Chitosan Grafted Zinc Containing Nanoclay Polymer Biocomposite (CZNCPBC): Controlled Release Formulation (CRF) of Zn2+. React. Funct. Polym. 2018, 127, 55–66. DOI: 10.1016/j.reactfunctpolym.2018.04.005.
  • Sarkar, A.; Biswas, D. R.; Datta, S. C.; Roy, T.; Moharana, P. C.; Biswas, S. S.; Ghosh, A. Polymer Coated Novel Controlled Release Rock Phosphate Formulations for Improving Phosphorus Use Efficiency by Wheat in an Inceptisol. Soil Tillage Res. 2018, 180, 48–62. DOI: 10.1016/j.still.2018.02.009.
  • Mandal, N.; Datta, S. C.; Manjaiah, K. M.; Dwivedi, B. S.; Kumar, R.; Aggarwal, P. Zincated Nanoclay Polymer Composites (Zncpcs): Synthesis, Characterization, Biodegradation and Controlled Release Behaviour in Soil. Polym. Plast. Technol. Engin. 2018, 57(17), 1–11.
  • Mathews, A. S.; Narine, S. Poly [N‐Isopropyl Acrylamide]‐Co‐Polyurethane Copolymers for Controlled Release of Urea. J. Polym. Sci. A Polym. Chem. 2010, 48, 3236–3243.
  • Barreca, S.; Orecchio, S.; Pace, A. The Effect of Montmorillonite Clay in Alginate Gel Beads for Polychlorinated Biphenyl Adsorption: Isothermal and Kinetic Studies. Appl. Clay Sci. 2014, 99, 220–228. DOI: 10.1016/j.clay.2014.06.037.
  • Dupuis, G.; LeHoux, J. G. Recovery of Chitosan from Aqueous Acidic Solutions by Salting-Out. Part 2: Use of Salts of Organic Acids. Carbohyd. Polym. 2007, 68(2), 287–294. DOI: 10.1016/j.carbpol.2006.12.009.
  • Buchholcz, G.; Kelemen, A.; Pintye-Hódi, K. Modified-Release Capsules Containing Sodium Riboflavin 5′-Phosphate. Drug Dev. Ind. Pharm. 2014, 40, 1632–1636. DOI: 10.3109/03639045.2013.841185.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.