135
Views
3
CrossRef citations to date
0
Altmetric
Articles

A facile route for the synthesis of mechanically strong MWCNTs/NDs nanobifiller filled polyacrylate composites

, , , , , & show all
Pages 1810-1827 | Received 26 Dec 2018, Accepted 24 Feb 2019, Published online: 21 Mar 2019

References

  • Liu, G.-Q.;. Morphology and Thermal Behaviour of Poly(Methyl Methacrylate)/Poly(Ethylene Glycol)/Multi-Walled Carbon Nanotubes Nanocomposites. Bulg. Chem. Commun. 2015, 47, 889–894.
  • Jabeen,; Kausar, A.; Muhammad, B.; Gul, S.; Farooq, M. Polymer Plast. Technol. Eng. 2015, 54, 1379–1409. DOI: 10.1080/03602559.2015.1021489.
  • Abdelrazek, E.-M.; Hezma, A.-M.; El-Khodary, A.; Elzayat, A.-M. Spectroscopic Studies and Thermal Properties of PCL/PMMA Biopolymer Blend. Egypt. J. Basic Appl. Sci. 2016, 3, 10–15. DOI: 10.1016/j.ejbas.2015.06.001.
  • Hayashida, K.; Matsuoka, Y. Electromagnetic Interference Shielding Properties of Polymer-Grafted Carbon Nanotube Composites with High Electrical Resistance. Carbon. 2015, 85, 363–371. DOI: 10.1016/j.carbon.2015.01.006.
  • Park, J.; Lee, S.; Le, J.-W. Effect of Manufacturing Condition in PC/PMMA/CNT Nanocomposites Extrusion on the Electrical, Morphological, and Mechanical Properties. Korea-Aust. Rheol. J. 2015, 27, 55–62. DOI: 10.1007/s13367-015-0007-y.
  • Mosnackava, K.; Spitalsky, Z.; Kulicek, J.; Prokes, J.; Skarmoutsou, A.; Charitdis, C.-A.; Omastova, M. Influence of Preparation Methods on the Electrical and Nanomechanical Properties of Poly(Methyl Methacrylate)/Multiwalled Carbon Nanotubes Composites. J. Appl. Polym. Sci. 2015, 132, 1–11. DOI: 10.1002/app.41721.
  • Lee, M.; Koo, T.; Lee, S.; Byong, H.-M.; Kim, J.-H. Morphology and Physical Properties of Nanocomposites Based on Poly(Methyl methacrylate)/Poly(vinylidene Fluoride) Blends and Multiwalled Carbon Nanotubes. Polym. Composite. 2015, 36, 1197–1204. DOI: 10.1002/pc.23022.
  • Polu, A.-R.; Ree, H.-W.; Reddy, M.-J.-K.; Shanmugharaj, A.-M.; Ryu, S.-H.; Kim, D.-K. Effect of POSS-PEG Hybrid Nanoparticles on Cycling Performance of polyether-LiDFOB Based Solid Polymer Electrolytes for All Solid-State Li-Ion Battery Applications. J. Ind. Eng. Chem. 2017, 45, 68–77. DOI: 10.1016/j.jiec.2016.09.004.
  • Ratnayake, U.-N.; Prematunga, D.-E.; Peiris, C.; Karuranaratne, V.; Amaratunga, G.-A.-J. Effect of Polyethylene Glycol-Intercalated Organoclay on Vulcanization Characteristics and Reinforcement of Natural Rubber Nanocomposites. J. Elastomers. Plast. 2016, 48, 711–727. DOI: 10.1177/0095244315618698.
  • Punithaa, N.; Saravananb, P.; Mohan, R.; Ramesh, P.-S. Antifouling Activities of -Cyclodextrin Stabilized Peg Based Silver Nanocomposites. Appl. Surf. Sci. 2017, 392, 126–134. DOI: 10.1016/j.apsusc.2016.07.114.
  • Lopes, J.-R.; Reis, R.-A.-D.; Almeida, L.-E. Production and Characterization of Films Containing Poly(Hydroxybutyrate) (PHB) Blended with Esterified Alginate (Alg-E) and Poly(Ethylene Glycol) (PEG). J. Appl. Polym. Sci. 2017, 134, 1–10. DOI: 10.1002/app.44362.
  • Nojoomi, A.; Tamjid, E.; Simchi, A.; Bonakdar, S. P. Injectable Polyethylene Glycol-Laponite Composite Hydrogels as Articular Cartilage Scaffolds with Superior Mechanical and Rheological Properties. Int. J. Polym. Mater. Po. 2017, 66, 105–114. DOI: 10.1080/00914037.2016.1182914.
  • Qian, T.; Li, J.; Deng, Y. Pore Structure Modified Diatomitesupported PEG Composites for Thermal Energy Storage. Sci. Rep. 2016, 6, 323–392. DOI: 10.1038/srep32392.
  • Almer, A.-M.; Jannasch, P. Solid Electrolyte Membranes from Semi-Interpenetrating Polymer Networks of PEG-grafted Polymethacrylates and Poly(Methyl Methacrylate). Solid. State. Ionics. 2006, 177, 573–579. DOI: 10.1016/j.ssi.2005.12.021.
  • Kapsalis, V.; Karamanis, D. Solar Thermal Energy Storage and Heat Pumps with Phase Change Materials. Appl. Therm. Eng. 2016, 99, 1212–1224. DOI: 10.1016/j.applthermeng.2016.01.071.
  • Mir, S.-M.; Jafari, S.-H.; Khonakdar, H.-A.; Krause, B.; Potschke, P.; Qazvini, N.-T. A Promising Approach to Low Electrical Percolation Threshold in PMMA Nanocomposites by Using MWCNT-PEO Predispersion. Mater. Design. 2016, 111, 253–262. DOI: 10.1016/j.matdes.2016.08.073.
  • Reyes-Acosta, M.-A.; Torres-Huerta, A.-M.; Domínguez-Crespo, M.-A.; Flores-Vela, A.-I.; Dorantes-Rosales, H.-J.; Ramírez-Meneses, E. Influence of ZrO2 Nanoparticles and Thermal Treatment on the Properties of PMMA/ZrO2 Hybrid Coatings. J. Alloys. Compd. 2015, 643, 150–158. DOI: 10.1016/j.jallcom.2014.10.040.
  • Wei, Q.-B.; Fu, F.; Zahang, Y.-Q.; Tang, L.; Wang, B. Synthesis, Characterization, and Properties of PMMA-g-PVA/Ag Vapor-Induced Responsive Nanocomposite. Adv. Polym. Technol. 2013, 32, 624–632. DOI: 10.1002/adv.21306.
  • UllahKhan, Z.; Kausar, A.; Ullah, H. A Review on Composite Papers of Graphene Oxide, Carbon Nanotube, Polymer/ GO,And Polymer/CNT: Processing Strategies, Properties, and Relevance. Polymer Plast. Technol. Eng. 2016, 55, 559–581. DOI: 10.1080/03602559.2015.1098693.
  • Sharma, K.; Kaushalyayan, K.-S.; Shukla, M. Pull-Out Simulations of Interfacial Properties of Amine Functionalized Multi-Walled Carbon Nanotube Epoxy Composites. Comp. Mater. Sci. 2015, 99, 232–241. DOI: 10.1016/j.commatsci.2014.12.023.
  • Ma, L.; Wei, S.; Hendrickson, K.-E., et al. Archer Enhanced Li–S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode. ACS. Nano. 2016, 10, 1050–1059. DOI: 10.1021/acsnano.5b06373.
  • Maitra, U.; Pandeeswar, M.; Govindaraju, T. Covalent Crosslinking of Carbon Nanostructures. J. Chem. Sci. 2012, 124, 551–556. DOI: 10.1007/s12039-012-0255-z.
  • Zhang, X.; Huang, Q.; Liu, M.; Tian, J.; Zeng, G.; Li, Z.; Wang, K.; Zhang, Q.; Wan, Q.; Deng, F. Preparation of Amine Functionalized Carbon Nanotubes via a Bioinspired Strategy and Their Application in Cu2+ Removal. Appl. Surf. Sci. 2015, 343, 19–27. DOI: 10.1016/j.apsusc.2015.03.081.
  • Sadegh, H.; Shahryari-Ghoshekandi, R. Functionalization of Carbon Nanotubes and Its Application in Nanomedicine: A Review. Nanomed. J. 2015, 24, 231–248. DOI: 10.7508/nmj.2015.04.001.
  • Gegenhuber, T.; Krekhova, M.; Schöbel, J.; Gröschel, A.-H.; Schmalz, H. “Patchy” Carbon Nanotubes as Efficient Compatibilizers for Polymer Blends. ACS. Macro. Lett. 2016, 53, 306–310. DOI: 10.1021/acsmacrolett.6b00033.
  • Osipov, V.-Y.; Aleksenskiy, A.-E.; Shames, A.-I.; Panich, A.-M.; Shestakov, M.-S.; Vul, A.-Y. Infrared Absorption Study of Surface Functional Groups Providing Chemical Modification of Nanodiamonds by Divalent Copper Ion Complexes. Diam. Relat. Mater. 2011, 20, 1234–1238. DOI: 10.1016/j.diamond.2011.07.008.
  • Mochalin, V.-N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The Properties and Applications of Nanodiamonds. Nat.Nanotech. 2012, 7, 11–23. DOI: 10.1038/NNANO.2011.209.
  • Hajiali, F.; Shojaei, A. Silane Functionalization of Nanodiamond for Polymer Nanocomposites-Effect of Degree of Silanization. Colloids. Surf. A. Physicochem. Eng. Asp. 2016, 506, 254–263. DOI: 10.1016/j.colsurfa.2016.06.028.
  • Etemadi, H.; Yegani, R.; Baaeipour, V. Study on the Reinforcing Effect of Nanodiamond Particles on the Mechanical, Thermal and Antibacterial Properties of Cellulose Acetate Membranes. Diam. Relat. Mater. 2016, 69, 166–176. DOI: 10.1016/j.diamond.2016.08.014.
  • Thomas, P.; Dakshayini, B.-S.; Kushwaha, H.-S.; Vaish, R. Effect of Sr2TiMnO6 Fillers on Mechanical, Dielectric and Thermal Behaviour of PMMA Polymer. J. Adv. Dielectr. 2015, 5, 1–11. DOI: 10.1142/S2010135X15500186.
  • Park, J.; Sangmook, L.; Lee, J.-W. Effect of Manufacturing Condition in PC/PMMA/CNT Nanocomposites Extrusion on the Electrical, Morphological, and Mechanical Properties. Korea-Aust. Rheol. J. 2015, 27, 55–62. DOI: 10.1007/s13367-015-0007-y.
  • Leala, C.-V.; Martinezb, D.-S.-T.; Mas, B.-A.; Alves, O.-L.; Duek, E.-A.-R. Influence of Purified Multiwalled Carbon Nanotubes on the Mechanical and Morphological Behavior in Poly (L-Lactic Acid) Matrix. J. Mech. Behav. Biomed. 2016, 59, 547–560. DOI: 10.1016/j.jmbbm.2016.03.016.
  • GonçAlves, G.; Marques, P.-A.; Barros, T.; Bdkin, I.; Singh, M.-K.; Emami, N.; Grácio, J. Graphene Oxide Modified with PMMA via ATRP as a Reinforcement Filler. J. Mat. Chem. 2010, 20, 9927−9934. DOI: 10.1039/C0JM01674H.
  • Jayakumar, N.;. Morphological Characterization of Poly Methyl Methacrylate for Surface Coating of Metals. Intl. J. Mech. Engg. Technol. 2015, 6, 139–143.
  • Papageorgioua, G.-Z.; Achilias, D.-S.; Nianias, N.-P.; Trikalitis, P. Effect of the Type of Nano-Filler on the Crystallization and Mechanical Properties of Syndiotactic Polystyrene Based Nanocomposites. Thermochim. Acta. 2013, 565, 82–94. DOI: 10.1016/j.tca.2013.04.037.
  • Al-Osaimi, J.; Alhosiny, N.; Badawi, A.; Abdallah, S. The Effects of CNTs Types on the Structural and Electrical Properties of CNTs/PMMA Nanocomposite Films. Int. J. Engg. Technol. 2013, 13, 77–79.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.