788
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Advances in polymer-anchored carbon nanotube foam: a review

Pages 1965-1978 | Received 29 Dec 2018, Accepted 22 Mar 2019, Published online: 08 Apr 2019

References

  • Kausar, A.;. Polyurethane Composite Foams in High-Performance Applications: A Review. Polym. Plast. Technol. Eng. 2018, 57, 346–369. DOI: 10.1080/03602559.2017.1329433.
  • Veena, C. Anju, G. Polymer/Carbon Nanotube Nanocomposite Foams. In Polymer-Carbon Nanotube Nanocomposite Foams; Siva Yellampalli (Ed.); Intech. Chapter 4, pp 65–90.
  • Dai, K.; Ji, X.; Xiang, Z. D.; Zhang, W. Q.; Tang, J. H.; Li, Z. M. Electrical Properties of an Ultralight Conductive Carbon Nanotube/Polymer Composite Foam upon Compression. Polym. Plast. Technol. Eng. 2012, 51, 304–306. DOI: 10.1080/03602559.2011.639327.
  • Yu, D. R.; Kim, G. H. Effects of Multi-Walled Carbon Nanotube (MWCNT) Content on Physical Properties and Cell Structure in Ethylene Vinyl Acetate Copolymer (EVA)/MWCNT Nanocomposite Foams. Polym. Plast. Technol. Eng. 2013, 52, 699–703. DOI: 10.1080/03602559.2012.762668.
  • Navidfar, A.; Sancak, A.; Yildirim, K. B.; Trabzon, L. A Study on Polyurethane Hybrid Nanocomposite Foams Reinforced with Multiwalled Carbon Nanotubes and Silica Nanoparticles. Polym. Plast. Technol. Eng. 2018, 57, 1463–1473. DOI: 10.1080/03602559.2017.1410834.
  • Gibson, L. J.; Ashby, M. F. Cellular Solids, 2nd ed.; Cambridge University Press: Cambridge, 1997; pp 7.
  • Mittal, V.;. Polymer Nanotubes Nanocomposites: Synthesis, Properties and Applications; London, UK: John Wiley & Sons, 2014.
  • Feng, L.; Xie, N.; Zhong, J. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials. 2014, 7, 3919–3945. DOI: 10.3390/ma7053919.
  • Gohardani, O.; Elola, M. C.; Elizetxea, C. Potential and Prospective Implementation of Carbon Nanotubes on Next Generation Aircraft and Space Vehicles: A Review of Current and Expected Applications in Aerospace Sciences. Prog. Aerospac. Sci. 2014, 70, 42–68. DOI: 10.1016/j.paerosci.2014.05.002.
  • Gupta, S.; Tai, N. H. Carbon Materials as Oil Sorbents: A Review on the Synthesis and Performance. J. Mater. Chem. A. 2016, 4, 1550–1565. DOI: 10.1039/C5TA08321D.
  • Ge, J.; Zhao, H. Y.; Zhu, H. W.; Huang, J.; Shi, L. A.; Yu, S. H. Advanced Sorbents for Oil‐Spill Cleanup: Recent Advances and Future Perspectives. Adv. Mater. 2016, 28, 10459–10490. DOI: 10.1002/adma.201601812.
  • Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-Temperature Solution Processing of Graphene-Carbon Nanotube Hybrid Materials for High-Performance Transparent Conductors. Nano Lett. 2009, 9, 1949–1955. DOI: 10.1021/nl9001525.
  • Mazzotta, G.; Dollmann, M.; Habisreutinger, S. N.; Christoforo, M. G.; Wang, Z.; Snaith, H. J.; Riede, M. K.; Nicholas, R. J. Solubilization of Carbon Nanotubes with Ethylene-Vinyl Acetate for Solution-Processed Conductive Films and Charge Extraction Layers in Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 2018, 11, 1185–1191.
  • Masuda, J. I.; Torkelson, J. M. Dispersion and Major Property Enhancements in Polymer/Multiwall Carbon Nanotube Nanocomposites via Solid-State Shear Pulverization Followed by Melt Mixing. Macromolecules. 2008, 41, 5974–5977. DOI: 10.1021/ma801321j.
  • Park, S. J.; Cho, M. S.; Lim, S. T.; Choi, H. J.; Jhon, M. S. Synthesis and Dispersion Characteristics of Multi‐Walled Carbon Nanotube Composites with Poly (Methyl Methacrylate) Prepared by In‐Situ Bulk Polymerization. Macromolecul. Rapid Commun. 2003, 24, 1070–1073. DOI: 10.1002/marc.200300089.
  • Iijima, S.;. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Hossieny, N.;. Morphology and Properties of Polymer/Carbon Nanotube Nanocomposite Foams Prepared by Supercritical Carbon Dioxide; Florida State University: Tallahassee, 2010.
  • Marthur, R. B.; Pande, S.; Singh, B. P.; Dhami, T. L. Electricla and Mechanical Properties of Multi-Walled Carbon Nanotubes Reinforced PMMA and PS Composites. Polym. Compos. 2008, 29, 717–727. DOI: 10.1002/pc.20449.
  • Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of Carbon Nanotubes. Chem. Rev. 2006, 106, 1105–1136. DOI: 10.1021/cr050569o.
  • Kalamkarov, A. L.; Georgiades, A. V.; Rokkam, S. K.; Veedu, V. P.; Ghasemi-Nejhad, M. N. Analytical and Numerical Techniques to Predict Carbon Nanotubes Properties. Int. J. Solid Struct. 2006, 43, 6832–6854.
  • Reich, S.; Thomsen, C.; Maultzsch, J. Carbon Nanotubes: Basic Concepts and Physical Properties; Wiley-VCH: Weinheim, 2004.
  • Tserpes, K. I.; Papanikos, P. Finite Element Modeling of Single-Walled Carbon Nanotubes. Compos. Part B: Eng. 2005, 36, 468–477. DOI: 10.1016/j.compositesb.2004.10.003.
  • Thostenson, E. T.; Ren, Z. F.; Chou, T. W. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review. Compos. Sci. Technol. 2001, 61, 1899–1912. DOI: 10.1016/S0266-3538(01)00094-X.
  • Ma, P. C.; Siddiqui, N. A.; Marom, G.; Kim, J. K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A: Appl. Sci. Manuf. 2010, 41, 1345–1367. DOI: 10.1016/j.compositesa.2010.07.003.
  • Sun, L.; Gibson, R. F.; Gordaninejad, F.; Suhr, J. Energy Absorption Capability of Nanocomposites: A Review. Compos. Sci.Technol. 2009, 69, 2392–2409. DOI: 10.1016/j.compscitech.2009.06.020.
  • Koratkar, N. A.; Suhr, J.; Joshi, A.; Kane, R. S.; Schadler, L. S.; Ajayan, P. M.; Bartolucci, S. Characterizing Energy Dissipation in Single-Walled Carbon Nanotube Polycarbonate Composites. Appl. Phys. Lett. 2005, 87, 063102. DOI: 10.1063/1.2007867.
  • Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-Engineerable and Highly Densely Packed Single-Walled Carbon Nanotubes and Their Application as Super-Capacitor Electrodes. Nature Mater. 2006, 5, 987. DOI: 10.1038/nmat1782.
  • Koziol, K.; Vilatela, J.; Moisala, A.; Motta, M.; Cunniff, P.; Sennett, M.; Windle, A. High-Performance Carbon Nanotube Fiber. Science. 2007, 318, 1892–1895. DOI: 10.1126/science.1147635.
  • Gu, H.; Swager, T. M. Fabrication of Free‐Standing, Conductive, and Transparent Carbon Nanotube Films. Adv. Mater. 2008, 20, 4433–4437. DOI: 10.1002/adma.v20:23.
  • Suhr, J.; Victor, P.; Ci, L.; Sreekala, S.; Zhang, X.; Nalamasu, O.; Ajayan, P. M. Fatigue Resistance of Aligned Carbon Nanotube Arrays under Cyclic Compression. Nature Nanotechnol. 2007, 2, 417. DOI: 10.1038/nnano.2007.186.
  • Zhang, M.; Fang, S.; Zakhidov, A. A.; Lee, S. B.; Aliev, A. E.; Williams, C. D.; Atkinson, K. R.; Baughman, R. H. Strong, Transparent, Multifunctional, Carbon Nanotube Sheets. Science. 2005, 309, 1215–1219. DOI: 10.1126/science.1115311.
  • Leroy, C. M.; Carn, F.; Backov, R.; Trinquecoste, M.; Delhaes, P. Multiwalled-Carbon-Nanotube-Based Carbon Foams. Carbon. 2007, 45, 2317. DOI: 10.1016/j.carbon.2007.06.006.
  • Shan, C.; Zhao, W.; Lu, X. L.; O’Brien, D. J.; Li, Y.; Cao, Z.; Elias, A. L.; Cruz-Silva, R.; Terrones, M.; Wei, B.; et al. Three-Dimensional Nitrogen-Doped Multiwall Carbon Nanotube Sponges with Tunable Properties. Nano Lett. 2013, 13, 5514–5520. DOI: 10.1021/nl403109g.
  • Lin, Z.; Gui, X.; Gan, Q.; Chen, W.; Cheng, X.; Liu, M.; Zhu, Y.; Yang, Y.; Cao, A.; Tang, Z. In-Situ Welding Carbon Nanotubes into a Porous Solid with Super-High Compressive Strength and Fatigue Resistance. Scientific Rep. 2015, 5, 11336.
  • Zhao, W.; Li, Y.; Wang, S.; He, X.; Shang, Y.; Peng, Q.; Wang, C.; Du, S.; Gui, X.; Yang, Y.; et al. Elastic Improvement of Carbon Nanotube Sponges by Depositing Amorphous Carbon Coating. Carbon. 2014, 76, 19–26. DOI: 10.1016/j.carbon.2014.04.032.
  • Kim, K. H.; Oh, Y.; Islam, M. Graphene Coating Makes Carbon Nanotube Aerogels Superelastic and Resistant to Fatigue. Nat. Nanotechnol. 2012, 7, 562–566. DOI: 10.1038/nnano.2012.118.
  • Cao, A.; Dickrell, P. L.; Sawyer, W. G.; Ghasemi-Nejhad, M. N.; Ajayan, P. M. Super-Compressible Foamlike Carbon Nanotube Films. Science. 2005, 310, 1307–1310. DOI: 10.1126/science.1118957.
  • Worsley, M. A.; Kucheyev, S. O.; Satcher, J. H., Jr; Hamza, A. V.; Baumann, T. F. Mechanically Robust and Electrically Conductive Carbon Nanotube Foams. Appl. Phys. Lett. 2009, 94, 073115. DOI: 10.1063/1.3086293.
  • Gui, X.; Wei, J.; Wang, K.; Cao, A.; Zhu, H.; Jia, Y.; Shu, Q.; Wu, D. Carbon Nanotube Sponges. Adv. Mater. 2010, 22, 617–621. DOI: 10.1002/adma.200902986.
  • Bradford, P. D.; Wang, X.; Zhao, H.; Zhu, Y. T. Tuning the Compressive Mechanical Properties of Carbon Nanotube Foam. Carbon. 2011, 49, 2834–2841. DOI: 10.1016/j.carbon.2011.03.012.
  • Liu, Y.; Ba, H.; Nguyen, D. L.; Ersen, O.; Romero, T.; Zafeiratos, S.; Begin, D.; Janowska, I.; Pham-Huu, C. Synthesis of Porous Carbon Nanotubes Foam Composites with a High Accessible Surface Area and Tunable Porosity. J. Mater. Chem. A. 2013, 1, 9508–9516. DOI: 10.1039/c3ta10695k.
  • Morris, C. A.; Anderson, M. L.; Stroud, R. M.; Merzbacher, C. I.; Rolison, D. R. Silica Sol as a Nanoglue: Flexible Synthesis of Composite Aerogels. Science. 1999, 284, 622–624.
  • Chakrapani, N.; Wei, B.; Carrillo, A.; Ajayan, P. M.; Kane, R. S. Capillarity-Driven Assembly of Two-Dimensional Cellular Carbon Nanotube Foams. Proceed. Nat. Acad. Sci. 2004, 101, 4009–4012. DOI: 10.1073/pnas.0400734101.
  • Kaur, S.; Ajayan, P. M.; Kane, R. S. Design and Characterization of Three-Dimensional Carbon Nanotube Foams. J. Phys. Chem. B. 2006, 110, 21377–21380. DOI: 10.1021/jp0644053.
  • Faraji, S.; Stano, K.; Akyildiz, H.; Yildiz, O.; Jur, J. S.; Bradford, P. D. Modifying the Morphology and Properties of Aligned CNT Foams through Secondary CNT Growth. Nanotechnology. 2018, 29, 295602. DOI: 10.1088/1361-6528/aac03c.
  • Lee, L. J.; Zeng, C.; Cao, X.; Han, X.; Shen, J.; Xu, G. Polymer Nanocomposite Foams. Compos. Sci. Technol. 2005, 65, 2344–2363. DOI: 10.1016/j.compscitech.2005.06.016.
  • Zhang, H. B.; Yan, Q.; Zheng, W. G.; He, Z.; Yu, Z. Z. Tough Graphene-Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2011, 3, 918–924. DOI: 10.1021/am200021v.
  • Nam, Y. S.; Park, T. G. Biodegradable Polymeric Microcellular Foams by Modified Thermally Induced Phase Separation Method. Biomaterials. 1999, 20, 1783–1790.
  • Collias, D. I.; Baird, D. G.; Borggreve, R. J. Impact Toughening of Polycarbonate by Microcellular Foaming. Polymer. 1994, 35, 3978–3983. DOI: 10.1016/0032-3861(94)90283-6.
  • Antunes, M.; Mudarra, M.; Velasco, J. I. Broad-Band Electrical Conductivity of Carbon Nanofibre-Reinforced Polypropylene Foams. Carbon. 2011, 49, 708–717. DOI: 10.1016/j.carbon.2010.10.032.
  • Matuana, L. M.; Park, C. B.; Balatinecz, J. J. Cell Morphology and Property Relationships of Microcellular Foamed Pvc/Wood‐Fiber Composites. Polym. Eng. Sci. 1998, 38, 1862–1872. DOI: 10.1002/pen.10356.
  • Rizvi, G.; Matuana, L. M.; Park, C. B. Foaming of PS/wood Fiber Composites Using Moisture as a Blowing Agent. Polym. Eng. Sci. 2000, 40, 2124–2132. DOI: 10.1002/pen.11345.
  • Yan, D. X.; Dai, K.; Xiang, Z. D.; Li, Z. M.; Ji, X.; Zhang, W. Q. Electrical Conductivity and Major Mechanical and Thermal Properties of Carbon Nanotube‐Filled Polyurethane Foams. J. Appl. Polym. Sci. 2011, 120, 3014–3019. DOI: 10.1002/app.33437.
  • Monnereau, L.; Urbanczyk, L.; Thomassin, J. M.; Pardoen, T.; Bailly, C.; Huynen, I.; Jérôme, C.; Detrembleur, C. Gradient Foaming of Polycarbonate/Carbon Nanotube Based Nanocomposites with Supercritical Carbon Dioxide and Their EMI Shielding Performances. Polymer. 2015, 59, 117–123. DOI: 10.1016/j.polymer.2014.11.063.
  • Yang, Y.; Gupta, M. C.; Dudley, K. L.; Lawrence, R. W. Conductive Carbon Nanofiber–Polymer Foam Structures. Adv. Mater. 2005, 17, 1999–2003. DOI: 10.1002/(ISSN)1521-4095.
  • Chen, L.; Schadler, L. S.; Ozisik, R. An Experimental and Theoretical Investigation of the Compressive Properties of Multi-Walled Carbon Nanotube/Poly (Methyl Methacrylate) Nanocomposite Foams. Polymer. 2011, 52, 2899–2909. DOI: 10.1016/j.polymer.2011.04.050.
  • Zeng, C.; Hossieny, N.; Zhang, C.; Wang, B. Synthesis and Processing of PMMA Carbon Nanotube Nanocomposite Foams. Polymer. 2010, 51, 655–664. DOI: 10.1016/j.polymer.2009.12.032.
  • Hennrich, F.; Krupke, P.; Arnold, R.; Stutz, J. A. R.; Lebedelkin, S.; Koch, T. The Mechanism of Cavitation-Induced Scission of Single-Walled Carbon Nanotubes. J. Phys. Chem. 2007, 111, 1932–1937. DOI: 10.1021/jp065262n.
  • Sauceau, M.; Fages, J.; Common, A.; Nikitine, C.; Rodier, E. New Challenges in Polymer Foaming: A Review of Extrusion Processes Assisted by Supercritical Carbon Dioxide. Prog. Polym. Sci. 2011, 36, 749–766. DOI: 10.1016/j.progpolymsci.2010.12.004.
  • Bult, J.; Controlled Carbon Nanotube Synthesis for Quantification of Polymer/Nanotube Composite Micromechanics. PhD Dissertation, Rensselaer Polytechnic Institute; 2007, p.19–21. DOI: 10.1016/j.jinorgbio.2006.07.015.
  • De Volder, M. F.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon Nanotubes: Present and Future Commercial Applications. Science. 2013, 339, 535–539. DOI: 10.1126/science.1222453.
  • Sun, H.; Xu, Z.; Gao, C. Multifunctional, Ultra‐Flyweight, Synergistically Assembled Carbon Aerogels. Adv. Mater. 2013, 25, 2554–2560. DOI: 10.1002/adma.201204576.
  • Daraio, C.; Nesterenko, V. F.; Jin, S.; Wang, W.; Rao, A. M. Impact Response by a Foamlike Forest of Coiled Carbon Nanotubes. J. Appl. Phs. 2006, 100, 064309. DOI: 10.1063/1.2345609.
  • Daraio, C.; Nesterenko, V. F.; Aubuchon, J. F.; Jin, S. Dynamic Nanofragmentation of Carbon Nanotubes. Nano Lett. 2004, 4, 1915–1918. DOI: 10.1021/nl048946k.
  • Misra, A.; Greer, J. R.; Daraio, C. Strain Rate Effects in the Mechanical Response of Polymer‐Anchored Carbon Nanotube Foams. Adv. Mater. 2009, 21, 334–338. DOI: 10.1002/adma.v21:3.
  • Ásatcher, J. H., Jr;. Stiff and Electrically Conductive Composites of Carbon Nanotube Aerogels and Polymers. J. Mater. Chem. 2009, 19, 3370–3372. DOI: 10.1039/b905735h.
  • Baumann, T. F.; Worsley, M. A.; Lewicki, J.; Kucheyev, S. O.; Kuntz, J. D.; Satcher, J. H., Stiff and Electrically Conductive Composites of Carbon Nanotube Aerogels and Polymers (No. LLNL-CONF-506871). 2011, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States).
  • Cui, Y.; Zhang, M. Fabrication of Cross-Linked Carbon Nanotube Foam Using Polymethylmethacrylate Microspheres as Templates. J. Mater. Chem. A. 2013, 1, 13984–13988. DOI: 10.1039/c3ta13065g.
  • Zhu, Y.; Li, L.; Zhang, C.; Casillas, G.; Sun, Z.; Yan, Z.; Ruan, G.; Peng, Z.; Raji, A. R. O.; Kittrell, C.; et al. A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material. Nat. Commun. 2012, 3, 1225. DOI: 10.1038/ncomms2234.
  • Li, Y.; Liu, J.; Liu, M.; Yu, F.; Zhang, L.; Tang, H.; Ye, B. C.; Lai, L. Fabrication of Ultra-Sensitive and Selective Dopamine Electrochemical Sensor Based on Molecularly Imprinted Polymer Modified Graphene@ Carbon Nanotube Foam. Electrochem. Commun. 2016, 64, 42–45. DOI: 10.1016/j.elecom.2016.01.009.
  • Sun, X.; Liu, X.; Shen, X.; Wu, Y.; Wang, Z.; Kim, J. K. Graphene Foam/Carbon Nanotube/Poly (Dimethyl Siloxane) Composites for Exceptional Microwave Shielding. Compos. Part A: Appl. Sci. Manuf. 2016, 85, 199–206. DOI: 10.1016/j.compositesa.2016.03.009.
  • Thomassin, J. M.; Pagnoulle, C.; Bednarz, L.; Huynen, I.; Jerome, R.; Detrembleur, C. Foams of polycaprolactone/MWNT Nanocomposites for Efficient EMI Reduction. J. Mater. Chem. 2008, 18, 792–796. DOI: 10.1039/b709864b.
  • Zhai, W.; Yu, J.; Wu, L.; Ma, W.; He, J. Heterogeneous Nucleation Uniformizing Cell Size Distribution in Microcellular Nanocomposites Foams. Polymer. 2006, 47, 7580–7589. DOI: 10.1016/j.polymer.2006.08.034.
  • Kholmanov, I.; Kim, J.; Ou, E.; Ruoff, R. S.; Shi, L. Continuous Carbon Nanotube–Ultrathin Graphite Hybrid Foams for Increased Thermal Conductivity and Suppressed Subcooling in Composite Phase Change Materials. ACS Nano 2015, 9, 11699–11707. DOI: 10.1021/acsnano.5b02917.
  • Salimian, S.; Zadhoush, A.; Naeimirad, M.; Kotek, R.; Ramakrishna, S. A Review on Aerogel: 3D Nanoporous Structured Fillers in Polymer‐Based Nanocomposites. Polym. Compos. 2018, 39, 3383–3408. DOI: 10.1002/pc.v39.10.
  • Kong, L.; Yin, X.; Yuan, X.; Zhang, Y.; Liu, X.; Cheng, L.; Zhang, L. Electromagnetic Wave Absorption Properties of Graphene Modified with Carbon Nanotube/Poly (Dimethyl Siloxane) Composites. Carbon. 2014, 73, 185–193. DOI: 10.1016/j.carbon.2014.02.054.
  • Maiti, S.; Shrivastava, N. K.; Suin, S.; Khatua, B. B. Polystyrene/MWCNT/Graphite Nanoplate Nanocomposites: Efficient Electromagnetic Interference Shielding Material through Graphite Nanoplate–MWCNT–Graphite Nanoplate Networking. ACS Appl. Mater. Interfaces. 2013, 5, 4712–4724. DOI: 10.1021/am400658h.
  • Chen, M.; Zhang, L.; Duan, S.; Jing, S.; Jiang, H.; Li, C. Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly (Dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556. DOI: 10.1002/adfm.v24.47.
  • Zhu, G.; He, Z.; Chen, J.; Zhao, J.; Feng, X.; Ma, Y.; Fan, Q.; Wang, L.; Huang, W. Highly Conductive Three-Dimensional MnO2-carbon nanotube–Graphene-Ni Hybrid Foam as a Binder-Free Supercapacitor Electrode. Nanoscale. 2014, 6, 1079–1085. DOI: 10.1039/c3nr04495e.
  • Peigney, A.; Rul, S.; Lefèvre-Schlick, F.; Laurent, C. Densification during Hot-Pressing of Carbon Nanotube–Metal–Magnesium Aluminate Spinel Nanocomposites. J. Eur. Ceramic Soc. 2007, 27, 2183–2193. DOI: 10.1016/j.jeurceramsoc.2006.07.012.
  • Antunes, M.; Velasco, J. I. Multifunctional Polymer Foams with Carbon Nanoparticles. Prog. Polym. Sci. 2014, 39, 486–509. DOI: 10.1016/j.progpolymsci.2013.11.002.
  • Shi, H.; Shi, D.; Yin, L.; Yang, Z.; Luan, S.; Gao, J.; Zha, J.; Yin, J.; Li, R. K. Ultrasonication Assisted Preparation of Carbonaceous Nanoparticles Modified Polyurethane Foam with Good Conductivity and High Oil Absorption Properties. Nanoscale. 2014, 6, 13748–13753. DOI: 10.1039/c4nr04360j.
  • Al-Saleh, M. H.; Sundararaj, U. Electromagnetic Interference Shielding Mechanisms of CNT/polymer Composites. Carbon. 2009, 47, 1738–1746. DOI: 10.1016/j.carbon.2009.02.030.
  • Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The Effects of Temperature and Frequency on the Dielectric Properties, Electromagnetic Interference Shielding and Microwave-Absorption of Short Carbon Fiber/Silica Composites. Carbon. 2010, 48, 788–796. DOI: 10.1016/j.carbon.2009.10.028.
  • Min, Z.; Yang, H.; Chen, F.; Kuang, T. Scale-Up Production of Lightweight High-Strength Polystyrene/Carbonaceous Filler Composite Foams with High-Performance Electromagnetic Interference Shielding. Mater. Lett. 2018, 230, 157–160. DOI: 10.1016/j.matlet.2018.07.094.
  • Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P. C. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett. 2006, 6, 1141–1145. DOI: 10.1021/nl0602589.
  • Kuang, T.; Chang, L.; Chen, F.; Sheng, Y.; Fu, D.; Peng, X. Facile Preparation of Lightweight High-Strength Biodegradable Polymer/Multi-Walled Carbon Nanotubes Nanocomposite Foams for Electromagnetic Interference Shielding. Carbon. 2016, 105, 305–313. DOI: 10.1016/j.carbon.2016.04.052.
  • Ling, J.; Zhai, W.; Feng, W.; Shen, B.; Zhang, J.; Zheng, W. G. Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces. 2013, 5, 2677–2684. DOI: 10.1021/am303289m.
  • Fei, Y.; Fang, W.; Zhong, M.; Jin, J.; Fan, P.; Yang, J.; Fei, Z.; Xu, L.; Chen, F. Extrusion Foaming of Lightweight Polystyrene Composite Foams with Controllable Cellular Structure for Sound Absorption Application. Polymers. 2019, 11, 106. DOI: 10.3390/polym11010106.
  • Dhakate, S. R.; Subhedar, K. M.; Singh, B. P. Polymer Nanocomposite Foam Filled with Carbon Nanomaterials as an Efficient Electromagnetic Interference Shielding Material. Rsc Adv. 2015, 5, 43036–43057. DOI: 10.1039/C5RA03409D.
  • Litster, S.; McLean, G. PEM Fuel Cell Electrodes. J. Power Sour. 2004, 130, 61–76. DOI: 10.1016/j.jpowsour.2003.12.055.
  • Mehta, V.; Cooper, J. S. Review and Analysis of PEM Fuel Cell Design and Manufacturing. J. Power Sour. 2003, 114, 32–53. DOI: 10.1016/S0378-7753(02)00542-6.
  • Shao, Y.; Yin, G.; Wang, Z.; Gao, Y. Proton Exchange Membrane Fuel Cell from Low Temperature to High Temperature: Material Challenges. J. Power Sour. 2007, 167, 235–242. DOI: 10.1016/j.jpowsour.2007.02.065.
  • Gutierrez, M. C.; Hortigüela, M. J.; Amarilla, J. M.; Jiménez, R.; Ferrer, M. L.; Del Monte, F. Macroporous 3D Architectures of Self-Assembled MWCNT Surface Decorated with Pt Nanoparticles as Anodes for a Direct Methanol Fuel Cell. J. Phys. Chem. C. 2007, 111, 5557–5560. DOI: 10.1021/jp0714365.
  • Jordan, L. R.; Shukla, A. K.; Behrsing, T.; Avery, N. R.; Muddle, B. C.; Forsyth, M. Diffusion Layer Parameters Influencing Optimal Fuel Cell Performance. J. Power Sour. 2000, 86, 250–254. DOI: 10.1016/S0378-7753(99)00489-9.
  • Jiang, R.; Chu, D. Voltage–Time Behavior of a Polymer Electrolyte Membrane Fuel Cell Stack at Constant Current Discharge. J. Power Sour. 2001, 92, 193–198. DOI: 10.1016/S0378-7753(00)00540-1.
  • Nabeta, M.; Sano, M. Nanotube Foam Prepared by Gelatin Gel as a Template. Langmuir. 2005, 21, 1706–1708. DOI: 10.1021/la047140x.
  • Thongprachan, N.; Nakagawa, K.; Sano, N.; Charinpanitkul, T.; Tanthapanichakoon, W. Preparation of Macroporous Solid Foam from Multi-Walled Carbon Nanotubes by Freeze-Drying Technique. Mater. Chem. Phys. 2008, 112, 262–269. DOI: 10.1016/j.matchemphys.2008.05.067.
  • Nakagawa, K.; Yasumura, Y.; Thongprachan, N.; Sano, N. Freeze-Dried Solid Foams Prepared from Carbon Nanotube Aqueous Suspension: Application to Gas Diffusion Layers of a Proton Exchange Membrane Fuel Cell. Chem. Engineer. Process: Process Intensif. 2011, 50, 22–30. DOI: 10.1016/j.cep.2010.10.010.
  • Serrano, M. C.; Gutierrez, M. C.; Del Monte, F. Role of Polymers in the Design of 3D Carbon Nanotube-Based Scaffolds for Biomedical Applications. Prog. Polym. Sci. 2014, 39, 1448–1471. DOI: 10.1016/j.progpolymsci.2014.02.004.
  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitor. Nat. Mater. 2008, 7, 845−854. DOI: 10.1038/nmat2297.
  • Chen, W.; Rakhi, R. B.; Hu, L. B.; Xie, Y.; Cui, Y.; Alshareef, H. N. High-Performance Nanostructured Supercapacitor Sponge. Nano Lett. 2011, 11, 5165–5172. DOI: 10.1021/nl2023433.
  • Li, W.; Zhang, F.; Dou, Y. Q.; Wu, Z. X.; Liu, H. J.; Qian, X. F.; Gu, D.; Xia, Y. Y.; Tu, B.; Zhao, D. Y. A Self-Template Strategy for the Synthesis of Mesoporous Carbon Nanofibers as Advanced Supercapacitor Electrodes. Adv. Energy Mater. 2011, 1, 382–386. DOI: 10.1002/aenm.v1.3.
  • You, B.; Jiang, J.; Fan, S. Three-Dimensional Hierarchically Porous All-Carbon Foams for Supercapacitor. ACS Appl. Mater. Interfaces. 2014, 6, 15302–15308. DOI: 10.1021/am503783t.
  • Wang, W.; Guo, S.; Penchev, M.; Ruiz, I.; Bozhilov, K. N.; Yan, D.; Ozkan, M.; Ozkan, C. S. Three Dimensional Few Layer Graphene and Carbon Nanotube Foam Architectures for High Fidelity Supercapacitors. Nano Ener. 2013, 2, 294–303. DOI: 10.1016/j.nanoen.2012.10.001.
  • Chu, Z.; Feng, Y.; Seeger, S. Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials. Angewan. Chem. Int. Ed. 2015, 54, 2328–2338. DOI: 10.1002/anie.201405785.
  • Calcagnile, P.; Fragouli, D.; Bayer, I. S.; Anyfantis, G. C.; Martiradonna, L.; Cozzoli, P. D.; Cingolani, R.; Athanassiou, A. Magnetically Driven Floating Foams for the Removal of Oil Contaminants from Water. ACS Nano. 2012, 6, 5413–5419. DOI: 10.1021/nn3012948.
  • Li, A.; Sun, H. X.; Tan, D. Z.; Fan, W. J.; Wen, S. H.; Qing, X. J.; Li, G. X.; Li, S. Y.; Deng, W. Q. Superhydrophobic Conjugated Microporous Polymers for Separation and Adsorption. Ener. Environ. Sci. 2011, 4, 2062–2065. DOI: 10.1039/c1ee01092a.
  • Kabiri, S.; Tran, D. N.; Altalhi, T.; Losic, D. Outstanding Adsorption Performance of Graphene–Carbon Nanotube Aerogels for Continuous Oil Removal. Carbon. 2014, 80, 523–533. DOI: 10.1016/j.carbon.2014.08.092.
  • Wang, C. F.; Lin, S. J. Robust Superhydrophobic/Superoleophilic Sponge for Effective Continuous Absorption and Expulsion of Oil Pollutants from Water. ACS Appl. Mater. Interfaces. 2013, 5, 8861–8864. DOI: 10.1021/am403266v.
  • Chen, N.; Pan, Q. Versatile Fabrication of Ultralight Magnetic Foams and Application for Oil–Water Separation. ACS Nano. 2013, 7, 6875–6883. DOI: 10.1021/nn4020533.
  • Wang, B.; Liang, W.; Guo, Z.; Liu, W. Biomimetic Super-Lyophobic and Super-Lyophilic Materials Applied for Oil/Water Separation: A New Strategy beyond Nature. Chem. Soc. Rev. 2015, 44, 336–361. DOI: 10.1039/c4cs00220b.
  • Ma, Q.; Cheng, H.; Fane, A. G.; Wang, R.; Zhang, H. Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Small. 2016, 12, 2186–2202. DOI: 10.1002/smll.201503685.
  • Li, J.; Yan, L.; Li, H.; Li, W.; Zha, F.; Lei, Z. Underwater Superoleophobic Palygorskite Coated Meshes for Efficient Oil/Water Separation. J. Mater. Chem. A. 2015, 3, 14696–14702. DOI: 10.1039/C5TA02870A.
  • Li, J.; Yan, L.; Zhao, Y.; Zha, F.; Wang, Q.; Lei, Z. One-Step Fabrication of Robust Fabrics with Both-Faced Superhydrophobicity for the Separation and Capture of Oil from Water. Phys. Chem. Chem. Phys. 2015, 17, 6451–6457. DOI: 10.1039/c5cp00154d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.