348
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Polybenzimidazole-based nanocomposite: current status and emerging developments

Pages 1979-1992 | Received 04 Jan 2019, Accepted 27 May 2019, Published online: 06 Jun 2019

References

  • Kalathil, A.; Raghavan, A.; Kandasubramanian, B. Polymer Fuel Cell Based on Polybenzimidazole Membrane: A Review. Polym. Plast. Technol. Eng. 2018, 58, 465–497.
  • Wang, F.; Wang, D.; Zhu, H. Montmorillonite-Polybenzimidazole Inorganic-Organic Composite Membrane with Electric Field-Aligned Proton Transport Channel for High Temperature Proton Exchange Membranes. Polym. Plast. Technol. Eng. 2018, 57, 1752–1759.
  • Prabunathan, P.; Hariharan, A.; Alagar, M. Photoluminescence and Electrochemical Behaviors of Polybenzimidazole-Grafted Carbon Nanotubes. Polym. Plast. Technol. Eng. 2016, 55, 542–551.
  • Kausar, A.;. Fabrication and Characteristics of Poly (Benzimidazole/Fluoro/Ether/Siloxane/Amide)/Sulfonated Polystyrene/Silica Nanoparticle-Based Proton Exchange Membranes Doped with Phosphoric Acid. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 184–191.
  • Zaton, M.; Donzel, N.; Cavaliere, S.; Rozière, J.; Jones, D. J. Tuning Architecture in Polybenzimidazole Reinforced Membranes. In Meeting Abstracts. Electrochem. Soc. 2018, 43, 1462.
  • Yamazaki, K.; Tanaka, M.; Kawakami, H. Preparation and Characterization of Sulfonated Block‐Graft Copolyimide/Sulfonated Polybenzimidazole Blend Membranes for Fuel Cell Application. Polym. Int. 2015, 64, 1079–1085.
  • Kausar, A.; Siddiq, M. Properties of Phosphoric Acid Doped Poly (Benzimidazole/Sulfone/Siloxane/Amide)/Sulfonated Polystyrene/Silica Nanoparticle-Based Proton Exchange Membranes for Fuel Cells. Chin. J. Polym. Sci. 2014, 32, 1319–1328.
  • Kausar, A.;. Polyimide, Polybenzimidazole-In Situ-Polyaniline Nanoparticle and Carbon Nano-Onion-Based Nanocomposite Designed for Corrosion Protection. Int. J. Polym. Anal. Charact. 2017, 22, 557–567.
  • Kausar, A.;. Proton Exchange Fuel Cell Membranes of Poly(Benzimidazole-Amide)/Sulfonated Polystyrene/Titania Nanoparticles-Grafted-Multi-Walled Carbon Nanotubes. J. Plast. Film. Sheet. 2015, 31, 27–44.
  • Kausar, A.;. Fuel Cell Membranes of Phosphoric Acid–Doped Poly (Benzimidazole/Ether/Siloxane/Amide)/Sulfonated Polystyrene/Silica Nanoparticle Nanocomposites: A Physical Property Study. J. Thermoplast. Compos. Mater. 2016, 29, 717–731. DOI: 10.1177/0892705714533373.
  • Perry, K. A.; Eisman, G. A.; Benicewicz, B. C. Electrochemical Hydrogen Pumping Using a High-Temperature Polybenzimidazole (PBI) Membrane. J. Power Sources. 2008, 177, 478–484.
  • Natarajan, K.; Kumar, R. P.; Reddy, P. V.; Gowda, N. M. N.; Rao, R. M. V. G. K. Thermal and Toughness Property Studies on a Polybenzimidazole‐Modified Epoxy Resin System. Polym. Int. 2000, 49, 1321–1323.
  • Maity, S.; Jana, T. Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM. ACS Appl. Mater. Interfac. 2014, 6, 6851–6864.
  • Che, Q.; Zhou, L.; Wang, J. Fabrication and Characterization of Phosphoric Acid Doped Imidazolium Ionic Liquid Polymer Composite Membranes. J. Molecul. Liq.. 2015, 206, 10–18.
  • Pu, H.;. Studies on Polybenzimidazole/Poly (4‐Vinylpyridine) Blends and Their Proton Conductivity after Doping with Acid. Polym. Int. 2003, 52, 1540–1545.
  • Singha, S.; Jana, T. Structure and Properties of Polybenzimidazole/Silica Nanocomposite Electrolyte Membrane: Influence of Organic/Inorganic Interface. ACS Appl. Mater. Interfac. 2014, 6, 21286–21296.
  • Wang, K. Y.; Yang, Q.; Chung, T. S.; Rajagopalan, R. Enhanced Forward Osmosis from Chemically Modified Polybenzimidazole (PBI) Nanofiltration Hollow Fiber Membranes with a Thin Wall. Chem. Eng. Sci. 2009, 64, 1577–1584.
  • Tominaga, Y.; Maki, T. Proton-Conducting Composite Membranes Based on Polybenzimidazole and Sulfonated Mesoporous Organosilicate. Int. J. Hydrog. Ener. 2014, 39, 2724–2730.
  • Qing, S.; Huang, W.; Yan, D. Synthesis and Characterization of Thermally Stable Sulfonated Polybenzimidazoles. Eur. Polym. J. 2005, 41, 1589–1595.
  • Fei, F.; Cseri, L.; Szekely, G.; Blanford, C. F. Robust Covalently Cross-Linked Polybenzimidazole/Graphene Oxide Membranes for High-Flux Organic Solvent Nanofiltration. ACS Appl. Mater. Interfac. 2018, 10, 16140–16147.
  • Iijima, S.;. Growth of Carbon Nanotubes. Mater. Sci. Eng.: B. 1993, 19, 172–180.
  • Byrne, M. T.; Gun’ko, Y. K. Recent Advances in Research on Carbon Nanotube–Polymer Composites. Adv. Mater.. 1672–1688, 2010, 22, 1672–1688.
  • Fujigaya, T.; Nakashima, N. Non-Covalent Polymer Wrapping of Carbon Nanotubes and the Role of Wrapped Polymers as Functional Dispersants. Sci. Technol. Adv. Mater. 2015, 16, 024802.
  • Okamoto, M.; Fujigaya, T.; Nakashima, N. Individual Dissolution of Single‐Walled Carbon Nanotubes by Using Polybenzimidazole, and Highly Effective Reinforcement of Their Composite Films. Adv. Funct. Mater. 1776–1782, 2008, 18, 1776–1782.
  • Akazaki, K.; Toshimitsu, F.; Ozawa, H.; Fujigaya, T.; Nakashima, N. Recognition and One-Pot Extraction of Right-And Left-Handed Semiconducting Single-Walled Carbon Nanotube Enantiomers Using Fluorene-Binaphthol Chiral Copolymers. J. Am. Chem. Soc. 2012, 134, 12700–12707.
  • Datsyuk, V.; Trotsenko, S.; Reich, S. Carbon-Nanotube–Polymer Nanofibers with High Thermal Conductivity. Carbon. 2013, 52, 605–608.
  • Hone, J.; Whitney, M.; Piskoti, C.; Zettl, A. Thermal Conductivity of Single Walled Carbon Nanotubes. Phys. Rev. B. 1999, 59, R2514–R2516.
  • Datsyuk, V.; Lisunova, M.; Kasimir, M.; Trotsenko, S.; Gharagozloo-Hubmann, K.; Firkowska, I.; Reich, S. Thermal Transport of Oil and Polymer Composites Filled with Carbon Nanotubes. Appl. Phys. A. 2011, 105, 781–788.
  • Okamoto, M.; Fujigaya, T.; Nakashima, N. Design of an Assembly of Poly(Benzimidazole), Carbon Nanotubes, and Pt Nanoparticles for a Fuel‐Cell Electrocatalyst with an Ideal Interfacial Nanostructure. Small. 2009, 5, 735–740.
  • Jheng, L. C.; Huang, C. Y.; Hsu, S. L. C. Sulfonated MWNT and Imidazole Functionalized MWNT/polybenzimidazole Composite Membranes for High-Temperature Proton Exchange Membrane Fuel Cells. Int. J. Hydrog. Ener. 2013, 38, 1524–1534.
  • Song, H.; Zhang, X.; Liu, Y.; Su, Z. Developing Graphene‐Based Nanohybrids for Electrochemical Sensing. Chem. Rec. 2018. DOI: 10.1002/tcr.201800084.
  • Sreenivasulu, B.; Ramji, B. R.; Nagaral, M. A Review on Graphene Reinforced Polymer Matrix Composites. Mater. Today: Proceed. 2018, 5, 2419–2428.
  • Sahoo, M.; Kalangi, V.; Perez-Page, M.; Nair, R. R.; Holmes, S. Polybenzimidazole Supported Monolayer Graphene Membrane for Inexpensive PEM Fuel Cells. In Meeting Abstracts. Electrochem. Soc. 2018, 42, 1432.
  • Wang, Y.; Shi, Z.; Fang, J.; Xu, H.; Ma, X.; Yin, J. Direct Exfoliation of Graphene in Methanesulfonic Acid and Facile Synthesis of Graphene/Polybenzimidazole Nanocomposites. J. Mater. Chem. 2011, 21, 505–512.
  • Zhang, Y.; Wang, Y.; Yu, J.; Chen, L.; Zhu, J.; Hu, Z. Tuning the Interface of Graphene Platelets/Epoxy Composites by the Covalent Grafting of Polybenzimidazole. Polymer. 2014, 55, 4990–5000.
  • Wang, Y.; Yu, J.; Chen, L.; Hu, Z.; Shi, Z.; Zhu, J. Nacre-Like Graphene Paper Reinforced by Polybenzimidazole. RSC Adv. 2013, 3, 20353–20362.
  • Fujigaya, T.; Hirata, S.; Nakashima, N. A Highly Durable Fuel Cell Electrocatalyst Based on Polybenzimidazole-Coated Stacked Graphene. J. Mater. Chem. A. 2014, 2, 3888–3893.
  • Li, Z. F.; Xin, L.; Yang, F.; Liu, Y.; Liu, Y.; Zhang, H.; Stanciu, L.; Xie, J. Hierarchical Polybenzimidazole-Grafted Graphene Hybrids as Supports for Pt Nanoparticle Catalysts with Excellent PEMFC Performance. Nano Ener. 2015, 16, 281–292.
  • Ahmad, M. W.; Dey, B.; Sarkhel, G.; Bag, D. S.; Choudhury, A. Exfoliated Graphene Reinforced Polybenzimidazole Nanocomposite with Improved Electrical, Mechanical and Thermal Properties. Mater. Chem. Phys. 2019, 223, 426–433.
  • Maity, N.; Mandal, A.; Roy, K.; Nandi, A. K. Physical and Dielectric Properties of Poly (Vinylidene Fluoride)/Polybenzimidazole Functionalized Graphene Nanocomposites. J. Polym. Sci. B: Polym. Phys. 2018, 57, 189–201.
  • Kowsari, E.; Zare, A.; Ansari, V. Phosphoric Acid-Doped Ionic Liquid-Functionalized Graphene Oxide/Sulfonated Polyimide Composites as Proton Exchange Membrane. Int. J. Hydrog. Ener. 2015, 40, 13964–13978.
  • Xu, C.; Liu, X.; Cheng, J.; Scott, K. Polybenzimidazole/Ionic-Liquidgraphite-Oxide Composite Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells. J. Power Sources. 2015, 274, 922–927.
  • Yang, Y.; Han, C.; Jiang, B.; Iocozzia, J.; He, C.; Shi, D.; Jiang, T.; Lin, Z. Graphene-Based Materials with Tailored Nanostructures for Energy Conversion and Storage. Mater. Sci. Engr.: R: Rep. 2016, 102, 1–72.
  • Tahrim, A. A.; Amin, I. N. H. M. Advancement in Phosphoric Acid Doped Polybenzimidazole Membrane for High Temperature PEM Fuel Cells: A Review. J. Appl. Membr. Sci. Technol. 2019, 23, 1.
  • Özdemir, Y.; Üregen, N.; Devrim, Y. Polybenzimidazole Based Nanocomposite Membranes with Enhanced Proton Conductivity for High Temperature PEM Fuel Cells. Int. J. Hydrog. Ener. 2017, 42, 2648–2657.
  • Yang, J.; Liu, C.; Gao, L.; Wang, J.; Xu, Y.; He, R. Novel Composite Membranes of Triazole Modified Graphene Oxide and Polybenzimidazole for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. RSC Adv. 2015, 5, 101049–101054.
  • Üregen, N.; Pehlivanoğlu, K.; Özdemir, Y.; Devrim, Y. Development of Polybenzimidazole/Graphene Oxide Composite Membranes for High Temperature PEM Fuel Cells. Int. J. Hydrog. Ener. 2017, 42, 2636–2647.
  • Cai, Y.; Yue, Z.; Xu, S. A Novel Polybenzimidazole Composite Modified by Sulfonated Graphene Oxide for High Temperature Proton Exchange Membrane Fuel Cells in Anhydrous Atmosphere. J. Appl. Polym. Sci. 2017, 134. DOI: 10.1002/APP.44986.
  • Farooqui, U. R.; Ahmad, A. L.; Hamid, N. A. Graphene Oxide: A Promising Membrane Material for Fuel Cells. Renew. Sustain. Ener. Rev. 2018, 82, 714–733.
  • Alzate-Carvajal, N.; Acevedo-Guzmán, D. A.; Meza-Laguna, V.; Farías, M. H.; Pérez-Rey, L. A.; Abarca-Morales, E.; García-Ramírez, V. A.; Basiuk, V. A.; Basiuk, E. V. One-Step Nondestructive Functionalization of Graphene Oxide Paper with Amines. RSC Adv. 2018, 8, 15253–15265.
  • Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and Characterization of Graphene Oxide Paper. Nature. 2007, 448, 457.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924.
  • Silva, B. L.; Bello, R. H.; Ferreira Coelho, L. A. The Role of the Ratio (PEG: PPG) of a Triblock Copolymer (Ppg‐B‐Peg‐B‐PPG) in the Cure Kinetics, Miscibility and Thermal and Mechanical Properties in an Epoxy Matrix. Polym. Int. 2018, 67, 1248–1255.
  • Wang, J.; Li, Z.; Fan, G.; Pan, H.; Chen, Z.; Zhang, D. Reinforcement with Graphene Nanosheets in Aluminum Matrix Composites. Scr. Mater. 2012, 66, 594–597.
  • Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X. R. R. S.; Ruoff, R. S.; et al. Functionalized Graphene Sheets for Polymer Nanocomposites. Nat. Nanotechnol. 2008, 3, 327.
  • Wang, Y.; Shi, Z.; Fang, J.; Xu, H.; Yin, J. Graphene Oxide/Polybenzimidazole Composites Fabricated by a Solvent-Exchange Method. Carbon. 2011, 49, 1199–1207.
  • Shao, H.; Shi, Z.; Fang, J.; Yin, J. One Pot Synthesis of Multiwalled Carbon Nanotubes Reinforced Polybenzimidazole Hybrids: Preparation, Characterization and Properties. Polymer. 2009, 50, 5987–5995.
  • Rafiee, M. A.; Rafiee, J.; Srivastava, I.; Wang, Z.; Song, H.; Yu, Z. Z.; Koratkar, N. Fracture and Fatigue in Graphene Nanocomposites. Small. 2010, 6, 179–183.
  • Khan, U.; Ryan, K.; Blau, W. J.; Coleman, J. N. The Effect of Solvent Choice on the Mechanical Properties of Carbon Nanotube–Polymer Composites. Compos. Sci. Technol. 2007, 67, 3158–3167.
  • Han, D.; Yan, L.; Chen, W.; Li, W. Preparation of Chitosan/Graphene Oxide Composite Film with Enhanced Mechanical Strength in the Wet State. Carbohydr. Polym. 2011, 83, 653–658.
  • Koros, W. J.; Fleming, G. K. Membrane-Based Gas Separation. J. Membr. Sci. 1993, 83, 1–80.
  • Ghosal, K.; Freeman, B. D. Gas Separation Using Polymer Membranes: An Overview. Polym. Adv. Technol. 1994, 5, 673–697.
  • Robeson, L. M.;. Polymer Membranes for Gas Separation. Curr. Opin. Sol. Stat. Membr. Sci. 1999, 4, 549–552.
  • Maier, G.;. Gas Separation with Polymer Membranes. Angewan. Chem. Int. Ed. 1998, 37, 2960–2974.
  • Farha, O. K.; Spokoyny, A. M.; Hauser, B. G.; Bae, Y. S.; Brown, S. E.; Snurr, R. Q.; Mirkin, C. A.; Hupp, J. T. Synthesis, Properties, and Gas Separation Studies of a Robust Diimide-Based Microporous Organic Polymer. Chem. Mater. 2009, 21, 3033–3035.
  • Li, X.; Singh, R. P.; Dudeck, K. W.; Berchtold, K. A.; Benicewicz, B. C. Influence of Polybenzimidazole Main Chain Structure on H2/CO2 Separation at Elevated Temperatures. J. Membr. Sci. 2014, 461, 59–68.
  • Krishnan, G.; Steele, D.; O’Brien, K.; Callahan, R.; Berchtold, K.; Figueroa, J. Simulation of a Process to Capture CO2 from IGCC Syngas Using a High Temperature PBI Membrane. Ener. Proceed. 2009, 1, 4079–4088.
  • Berchtold, K. A.; Singh, R. P.; Young, J. S.; Dudeck, K. W. Polybenzimidazole Composite Membranes for High Temperature Synthesis Gas Separations. J. Membr. Sci. 2012, 415, 265–270.
  • Singh, R. P.; Dahe, G. J.; Dudeck, K. W.; Welch, C. F.; Berchtold, K. A. High Temperature Polybenzimidazole Hollow Fiber Membranes for Hydrogen Separation and Carbon Dioxide Capture from Synthesis Gas. Ener. Proceed. 2014, 63, 153–159.
  • Kumbharkar, S. C.; Liu, Y.; Li, K. High Performance Polybenzimidazole Based Asymmetric Hollow Fibre Membranes for H2/CO2 Separation. J. Membr. Sci. 2011, 375, 231–240.
  • Kausar, A.;. Progression from Polyimide to Polyimide Composite in Proton-Exchange Membrane Fuel Cell. Polym. Plast. Technol. Eng. 2017, 56, 1375–1390.
  • Guan, Y.; Pu, H.; Wan, D. Synthesis and Properties of Poly [2,2ʹ-(4,4ʹ-(2,6-Bis (Phenoxy) Benzonitrile))-5,5ʹ-Bibenzimidazole] for Proton Conducting Membranes in Fuel Cells. Polym. Chem. 2011, 2, 1287–1292.
  • Guan, Y. S.; Pu, H. T.; Jin, M.; Chang, Z. H.; Wan, D. C. Preparation and Characterisation of Proton Exchange Membranes Based on Crosslinked Polybenzimidazole and Phosphoric Acid. Fuel Cells. 2010, 10, 973–982.
  • Hazarika, M.; Jana, T. Proton Exchange Membrane Developed from Novel Blends of Polybenzimidazole and Poly (Vinyl-1, 2, 4-Triazole). ACS Appl. Mater. Interfac. 2012, 4, 5256–5265.
  • Kawahara, M.; Morita, J.; Rikukawa, M.; Sanui, K.; Ogata, N. Synthesis and Proton Conductivity of Thermally Stable Polymer Electrolyte: Poly (Benzimidazole) Complexes with Strong Acid Molecules. Electrochim. Acta. 2000, 45, 1395–1398.
  • Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F.; Litt, M. Aciddoped Polybenzimidazoles: A New Polymer Electrolyte. J. Electrochem. Soc. 1995, 142, L121–123.
  • Kannan, R.; Kagalwala, H. N.; Chaudhari, H. D.; Kharul, U. K.; Kurungot, S.; Pillai, V. K., . Improved Performance of Phosphonated Carbon Nanotube–Polybenzimidazole Composite Membranes in Proton Exchange Membrane Fuel Cells. J. Mater. Chem. 2011, 21, 7223–7231.
  • Xue, C.; Zou, J.; Sun, Z.; Wang, F.; Han, K.; Zhu, H. Graphite Oxide/Functionalized Graphene Oxide and Polybenzimidazole Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells. Int. J. Hydrog. Ener. 2014, 39, 7931–7939.
  • Peighambardoust, S. J.; Rowshanzamir, S.; Amjadi, M. Review of the Proton Exchange Membranes for Fuel Cell Applications. Int. J. Hydrog. Ener. 2010, 35, 9349–9384.
  • Duangkaew, P.; Wootthikanokkhan, J. Methanol Permeability and Proton Conductivity of Direct Methanol Fuel Cell Membranes Based on Sulfonated Poly (Vinyl Alcohol)-Layered Silicate Nanocomposites. J. Appl. Polym. Sci. 2008, 109, 452–458.
  • Conway, B. E.;. Electrochemical Capacitors: Scientific Fundamentals and Technology Applications; Springer Science & Business Media: USA, 2013.
  • Burke, A.;. Ultracapacitors: Why, How, and Where Is the Technology. J. Power Sources. 2000, 91, 37–50.
  • Sarangapani, S.; Tilak, B. V.; Chen, C. P. Materials for Electrochemical Capacitors, Theoretical and Experimental Constraints. J. Electrochem. Soc. 1996, 143, 3791–3799.
  • Kotz, K.; Carlen, M. Principles and Applications of Electrochemical Capacitors. Electrochim. Acta. 2000, 45, 2483–2498.
  • Pandolfo, A. G.; Hollenkamp, A. F. Carbon Properties and Their Role in Supercapacitors. J. Power Sources. 2006, 157, 11–27.
  • Simon, P.; Gogotsi, Y. Materials for Electrochemical Capacitors. Nat. Mater. 2008, 7, 845–854.
  • Guo, Q.; Zhou, X.; Li, X.; Chen, S.; Seema, A.; Greiner, A.; Hou, H. Supercapacitors Based on Hybrid Carbon Nanofibers Containing Multiwalled Carbon Nanotubes. J. Mater. Chem. 2009, 19, 2810–2816.
  • Gómez-Romero, P.; Chojak, M.; Cuentas-Gallegos, K.; Asensio, J. A.; Kulesza, P. J.; Casañ-Pastor, N.; Lira-Cantú, M. Hybrid Organic–Inorganic Nanocomposite Materials for Application in Solid State Electrochemical Supercapacitors. Electrochem. Commun. 2003, 5, 149–153.
  • Lysova, A. A.; Stenina, I. A.; Volkov, A. O.; Ponomarev, I. I.; Yaroslavtsev, A. B. Proton Conductivity of Hybrid Membranes Based on Polybenzimidazoles and Surface-Sulfonated Silica. Sol. Stat. Ion. 2019, 329, 25–30.
  • Hastak, R. S.; Sivaraman, P.; Potphode, D. D.; Shashidhara, K.; Samui, A. B. High Temperature All Solid State Supercapacitor Based on Multi-Walled Carbon Nanotubes and Poly[2,5 Benzimidazole]. J. Sol. Stat. Electrochem. 2012, 16, 3215–3226.
  • Asensio, A.; Ramero, P. S. Recent Developments on Proton Conducting Poly [2,5-Benzimidazole] (ABPBI) Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells. Fuel Cell. 2005, 5, 34324–34336.
  • Sawangphruk, M.; Suksomboon, M.; Kongsupornsak, K.; Khuntilo, J.; Srimuk, P.; Sanguansak, Y.; Klunbud, P.; Suktha, P.; Chiochan, P. High-Performance Supercapacitors Based on Silver Nanoparticle-Polyaniline-Graphene Nanocomposites Coated on Flexible Carbon Fiber Paper. J. Mater. Chem. A. 2013, 1, 9630–9636.
  • Zhu, J.; Cao, W.; Yue, M.; Hou, Y.; Han, J.; Yang, M. Strong and Stiff Aramid Nanofiber/Carbon Nanotube Nanocomposites. ACS Nano. 2015, 9, 2489–2501.
  • Chang, Y. N.; Lai, J. Y.; Liu, Y. L. Polybenzimidazole (PBI)-Functionalized Silica Nanoparticles Modified PBI Nanocomposite Membranes for Proton Exchange Membranes Fuel Cells. J. Membr. Sci. 2012, 403, 1–7.
  • Wang, C.; Lin, B.; Qiao, G.; Wang, L.; Zhu, L.; Chu, F.; Feng, T.; Yuan, N.; Ding, J. Polybenzimidazole/Ionic Liquid Functionalized Graphene Oxide Nanocomposite Membrane for Alkaline Anion Exchange Membrane Fuel Cells. Mater. Lett. 2016, 173, 219–222.
  • Eftekhari, A.; Shulga, Y. M.; Baskakov, S. A.; Gutsev, G. L. Graphene Oxide Membranes for Electrochemical Energy Storage and Conversion. Int. J. Hydrog. Ener. 2018, 43, 2307–2326.
  • Wang, Y.; Chen, L.; Yu, J.; Zhu, J.; Shi, Z.; Hu, Z. Strong and Conductive Polybenzimidazole Composites with High Graphene Contents. RSC Adv. 2013, 3, 12255–12266.
  • Rathod, D.; Vijay, M.; Islam, N.; Kannan, R.; Kharul, U.; Kurungot, S.; Pillai, V. Design of an “All Solid-State” Supercapacitor Based on Phosphoric Acid Doped Polybenzimidazole (PBI) Electrolyte. J. Appl. Electrochem. 2009, 39, 1097–1103.
  • Kim, S. K.; Kim, H. J.; Lee, J. C.; Braun, P. V.; Park, H. S. Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. ACS Nano. 2015, 9, 8569–8577.
  • Qin, Q.; Du, X.; Xu, C.; Huang, S.; Wang, W.; Zhang, Y.; Yan, J.; Liu, J.; Wu, Y. Flexible Supercapacitors Based on Solid Ion Conducting Polymer with High Mechanical Strength. J. Electrochem. Soc. 2017, 164, A1952–A1957.
  • An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J. M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H. Electrochemical Properties of High‐Power Supercapacitors Using Single‐Walled Carbon Nanotube Electrodes. Adv. Funct. Mater. 2001, 11, 387–392.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.