200
Views
4
CrossRef citations to date
0
Altmetric
Articles

Synthesis, characterization and rheological properties of acrylamide/ acidic monomer/ N-(4-ethylphenyl) acrylamide Terpolymers as pH- responsive hydrogels and nanogels

& ORCID Icon
Pages 441-455 | Received 26 Mar 2019, Accepted 13 Sep 2019, Published online: 25 Sep 2019

References

  • Zhang, X.; Wu, D.; Chu, -C.-C. Synthesis and Characterization of Partially Biodegradable, Temperature and pH Sensitive Dex–MA/PNIPAAm Hydrogels. Biomaterials. 2004, 25(19), 4719–4730. DOI: 10.1016/j.biomaterials.2003.11.040.
  • Xu, F.-J.; Kang, E.-T.; Neoh, K.-G. pH-and Temperature-responsive Hydrogels from Crosslinked Triblock Copolymers Prepared via Consecutive Atom Transfer Radical Polymerizations. Biomaterials. 2006, 27(14), 2787–2797. DOI: 10.1016/j.biomaterials.2006.01.003.
  • Laftah, W. A.; Hashim, S.; Ibrahim, A. N. Polymer Hydrogels: A Review. Polym. Plast. Technol. Eng. 2011, 50(14), 1475–1486. DOI: 10.1080/03602559.2011.593082.
  • Qi, X.; Wei, W.; Li, J.; Zuo, G.; Pan, X.; Su, T.; Zhang, J.; Dong, W. Salecan-based pH-sensitive Hydrogels for Insulin Delivery. Mol. Pharmaceutics. 2017, 14(2), 431–440.
  • Alzari, V.; Mariani, A.; Monticelli, O.;Valentini, L.; Nuvoli, D.; Piccinini, M.; Scognamillo, S.; Bon, S.B.; Illescas, J. Stimuli‐responsive Polymer Hydrogels Containing Partially Exfoliated Graphite. J. Polym. Sci. Pol. Chem. 2010, 48(23), 5375–5381.
  • Kuckling, D.; Wycisk, A. Stimuli‐responsive Star Polymers. J. Polym. Sci. Pol. Chem. 2013, 51(14), 2980–2994. DOI: 10.1002/pola.26696.
  • Mignon, A.; Graulus, G.-J.; Snoeck, D.; Martins, J.; De Belie, N.; Dubruel, P.; Van Vlierberghe, S;. pH-sensitive Superabsorbent Polymers: A Potential Candidate Material for Self-healing Concrete. J. Mater. Sci. 2015, 50(2), 970–979.
  • Ozay, O.;. Synthesis and Swelling Behavior of Novel pH Responsive Hydrogels for Environmental Applications. Polym. Plast. Technol. Eng. 2014, 53(2), 130–140. DOI: 10.1080/03602559.2013.843697.
  • Wan, T.; Chen, Q.; Zhao, Q.; Huang, R.; Liao, L.; Xiong, J.; Tang, L. Synthesis and Swelling Properties of a pH‐And Temperature‐dual Responsive Hydrogel by Inverse Microemulsion Polymerization. J. Appl. Polym. Sci. 2015, 132, 26. DOI: 10.1002/app.42139.
  • El Halah, A.; Contreras, J.; Rojas-Rojas, L.; Rivas, M.; Romero, M.; López-Carrasquero, F. New Superabsorbent Hydrogels Synthesized by Copolymerization of Acrylamide and N-2-hydroxyethyl Acrylamide with Itaconic Acid or Itaconates Containing Ethylene Oxide Units in the Side Chain. J. Polym. Res. 2015, 22(12), 233.
  • Pandey, M.; Amin, M. C. I. M. Accelerated Preparation of Novel Bacterial Cellulose/acrylamide-based Hydrogel by Microwave Irradiation. Int. J. Polym. Matter. 2013, 62(7), 402–405. DOI: 10.1080/00914037.2012.719136.
  • Chetty, A.; Kovács, J.; Sulyok, Z.; Mészáros, Á.; Fekete, J.; Domján, A.; Szilágyi, A.; Vargha, V. A Versatile Characterization of Poly (n-isopropylacrylamideco-n, N-methylene-bis-acrylamide) Hydrogels for Composition, Mechanical Strength, and Rheology. Express Polym. Lett. 2013, 7(1), 95–105.
  • Varaprasad, K.; Vimala, K.; Ravindra, S.; Reddy, N. N.; Raju, K. M. Development of Sodium Carboxymethyl Cellulose-based Poly (acrylamide-co-2acrylamido-2-methyl-1-propane Sulfonic Acid) Hydrogels for in Vitro Drug Release Studies of Ranitidine Hydrochloride an Anti-ulcer Drug. Polym. Plast. Technol. 2011, 50(12), 1199–1207.
  • Constantin, M.; Bucatariu, S.; Harabagiu, V.; Popescu, I.; Ascenzi, P.; Fundueanu, G. Poly (n-isopropylacrylamide-co-methacrylic Acid) pH/thermo-responsive Porous Hydrogels as Self-regulated Drug Delivery System. Eur. J. Pharm. Sci. 2014, 62, 86–95. DOI: 10.1016/j.ejps.2014.05.005.
  • Mamaghani, P. Y.; Kaffashi, B.; Salehi, R.; Davaran, S. Synthesis, Characterization, and Viscoelastic Behavior of Thermothickening Poly (n-isopropylacrylamide-methacrylicacide-vinylpyrrolidone) Nanogels as an Injectable Biocompatible Drug Carrier. Int. J. Polym. Matter. 2015, 64(2), 55–63.
  • Gulyuz, U.; Okay, O. Self-healing Poly (acrylic Acid) Hydrogels with Shape Memory Behavior of High Mechanical Strength. Macromolecules. 2014, 47(19), 6889–6899. DOI: 10.1021/ma5015116.
  • Devi, N.; Narzary, A. Release Dynamics of Brufen from a Drug-loaded Polymer Hydrogel Containing Polyvinyl Alcohol, 2-Acrylamide-2-methylpropane Sulfonic Acid and Acrylamide. Int. J. Polym. Matter. 2012, 61(11), 821–833. DOI: 10.1080/00914037.2011.610052.
  • Durmaz, S.; Okay, O. Acrylamide/2-acrylamido-2-methylpropane Sulfonic Acid Sodium Salt-based Hydrogels: Synthesis and Characterization. Polymer. 2000, 41(10), 3693–3704. DOI: 10.1016/S0032-3861(99)00558-3.
  • Charbonneau, C.; Nicolai, T.; Chassenieux, C.; Colombani, O.; de Souza Lima, M. M. pH-Sensitive Hydrogels Formed by Self-assembled Amphiphilic Triblock Copolyelectrolytes. React. Funct. Polym. 2013, 73(7), 965–968.
  • Dai, S.; Ravi, P.; Tam, K. C. pH-Responsive Polymers: Synthesis, Properties and Applications. Soft Matter. 2008, 4(3), 435–449. DOI: 10.1039/b714741d.
  • Gao, X.; Cao, Y.; Song, X.; Zhang, Z.; Xiao, C.; He, C.; Chen, X. pH-And Thermo-responsive Poly (n-isopropylacrylamide-co-acrylic Acid Derivative) Copolymers and Hydrogels with LCST Dependent on pH and Alkyl Side Groups. J. Mater Chem. B. 2013, 1(41), 5578–5587.
  • Bencherif, S. A.; Siegwart, D. J.; Srinivasan, A.; Horkay, F.; Hollinger, J.O.; Washburn, N. R.; Matyjaszewski, K. Nanostructured Hybrid Hydrogels Prepared by a Combination of Atom Transfer Radical Polymerization and Free Radical Polymerization. Biomaterials. 2009, 30(29), 5270–5278.
  • Sanson, N.; Rieger, J. Synthesis of Nanogels/microgels by Conventional and Controlled Radical Crosslinking Copolymerization. Polym. Chem. 2010, 1(7), 965–977. DOI: 10.1039/c0py00010h.
  • Patel, J. P.; Deshmukh, S.; Zhao, C.; Wamuo, O.; Hsu, S.L.; Schoch, A.B.; Carleen, S.A.; Matsumoto, D. An Analysis of the Role of Nonreactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. J. Polym. Sci. B Polym. Phys. 2017, 55(2), 206–213.
  • Patel, J. P.; Xiang, Z. G.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. Characterization of the Crosslinking Reaction in High Performance Adhesives. Int. J. Adhes. Adhes. 2017, 78, 256–262. DOI: 10.1016/j.ijadhadh.2017.08.006.
  • Patel, J. P.; Hsu, S. L. Development of Low Field NMR Technique for Analyzing Segmental Mobility of Crosslinked Polymers. J. Polym. Sci. B Polym. Phys. 2018, 56(8), 639–643. DOI: 10.1002/polb.v56.8.
  • Bossard, F.; Aubry, T.; Gotzamanis, G.; Tsitsilianis, C. pH-Tunable Rheological Properties of a Telechelic Cationic Polyelectrolyte Reversible Hydrogel. Soft Matter. 2006, 2(6), 510–516.
  • Abdurrahmanoglu, S.; Can, V.; Okay, O. Design of High-toughness Polyacrylamide Hydrogels by Hydrophobic Modification. Polymer. 2009, 50(23), 5449–5455. DOI: 10.1016/j.polymer.2009.09.042.
  • París, R.; Quijada-Garrido, I. Temperature-and pH-responsive Behaviour of Poly (2-(2-methoxyethoxy) Ethyl methacrylate-co-N, N-dimethylaminoethyl Methacrylate) Hydrogels. Eur. Polym. J. 2010, 46(11), 2156–2163. DOI: 10.1016/j.eurpolymj.2010.09.004.
  • Khakpour, H.; Abdollahi, M. Synthesis, Characterization, Rheological Properties and Hydrophobic Nano-association of Acrylamide/Styrene and Acrylamide/sodium Styrene Sulfonate/styrene Co-and Terpolymers. J. Polym. Res. 2016, 23(8), 168. DOI: 10.1007/s10965-016-1064-8.
  • Khakpour, H.; Abdollahi, M.; Nasiri, A. Synthesis, Microstructural Characterization and Hydrophobic Intermolecular Nano-aggregation Behavior of Acrylamide/2-acrylamido-2-methy-1-propane Sulfonic Acid/butyl Acrylate Co-and Terpolymers. J. Polym. Res. 2015, 22(10), 1–13. DOI: 10.1007/s10965-015-0828-x.
  • Owusu‐Nkwantabisah, S.; Gillmor, J. R.; Switalski, S. C.; Slater, G. L. An Autonomous Self‐healing Hydrogel Based on Surfactant‐free Hydrophobic Association. J. Appl. Polym. Sci. 2017, 134, 19. DOI: 10.1002/app.44800.
  • Yang, M.; Liu, C.; Li, Z.; Gao, G.; Liu, F. Temperature-responsive Properties of Poly (acrylic Acid-co-acrylamide) Hydrophobic Association Hydrogels with High Mechanical Strength. Macromolecules. 2010, 43(24), 10645–10651.
  • Yao, Z.; Grishkewich, N.; Tam, K. Swelling and Shear Viscosity of Stimuli-responsive Colloidal Systems. Soft Matter. 2013, 9(22), 5319–5335. DOI: 10.1039/c3sm50374g.
  • Hao, J.; Weiss, R. Viscoelastic and Mechanical Behavior of Hydrophobically Modified Hydrogels. Macromolecules. 2011, 44(23), 9390–9398. DOI: 10.1021/ma202130u.
  • Valint, P., Jr; Bock, J.; Schulz, D. Synthesis and Characterization of Hydrophobically Associating Polymers. Polymers Aqueous Media. 1989, 223. ACS Publications. DOI:10.1021/ba-1989-0223.
  • Blackburn, W. H.; Lyon, L. A. Size-controlled Synthesis of Monodisperse Core/shell Nanogels. Colloid Polym. Sci. 2008, 286(5), 563–569. DOI: 10.1007/s00396-007-1805-7.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta. 2008, 76(5), 965–977.
  • Khakpour, H.; Abdollahi, M. Rheological Properties of Acrylamide/butyl Acrylate/2-acrylamido-2-methyl-1-propane Sulfonic Acid Co-And Terpolymers Synthesized by Heterogeneous and Micellar Methods. Polym. Bull. 2017, 1–17. DOI: 10.1007/s00289-017-2009-z.
  • Hill, A.; Candau, F.; Selb, J. Properties of Hydrophobically Associating Polyacrylamides: Influence of the Method of Synthesis. Macromolecules. 1993, 26(17), 4521–4532. DOI: 10.1021/ma00069a017.
  • Khakpour, H.; Abdollahi, M. Copolymer Microstructure, Nanocomposite Morphology and Aqueous Solution Viscosity of Styrene-modified Polyacrylamides in Situ Synthesized in Presence of Clay Mineral. Appl. Clay Sci. 2018, 151, 10–19. DOI: 10.1016/j.clay.2017.10.004.
  • Abdollahi, M.; Khakpour, H. Synthesis of Polyacrylamides Hydrophobically Modified with Butyl Acrylate Using a Nanoclay with Interlayer Spaces for Butyl Acrylate Aggregation: Studies on the Microstructure and Aqueous Solution Viscosity. RSC Adv. 2015, 5(124), 102844–102855. DOI: 10.1039/C5RA21015A.
  • Osswald, T.; Rudolph, N. Polymer Rheology: Fundamentals and Applications. Polymer Rheology; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2014.
  • Annable, T.; Buscall, R.; Ettelaie, R.; Whittlestone, D. The Rheology of Solutions of Associating Polymers: Comparison of Experimental Behavior with Transient Network Theory. J. Rheology. 1993, 37(4), 695–726.
  • Zhang, Y.-X.; Chen, Y.-F.; Shen, X.-Y.; Hu, J. J.; Jan, J. S. Reduction-And pH-Sensitive Lipoic Acid-modified Poly (l-lysine) and Polypeptide/silica Hybrid Hydrogels/nanogels. Polymer. 2016, 86, 32–41. DOI: 10.1016/j.polymer.2016.01.030.
  • Xia, Z.; Patchan, M.; Maranchi, J.; Elisseeff, J.; Trexler, M. Determination of Crosslinking Density of Hydrogels Prepared from Microcrystalline Cellulose. J. Appl. Polym. Sci. 2013, 127(6), 4537–4541.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.