117
Views
0
CrossRef citations to date
0
Altmetric
Articles

Fabrication and characterization of colon specific eudragit coated graphene oxide microsphere for sustained delivery of tramadol hydrochloride

, , , , &
Pages 606-618 | Received 12 Jul 2019, Accepted 13 Sep 2019, Published online: 27 Sep 2019

References

  • Lennard-Jones, J.;. Classification of Inflammatory Bowel Disease. Scand. J. Gastroenterol. 1989, 24(sup170), 2–6. DOI: 10.3109/00365528909091339.
  • Seeli, D. S.; Prabaharan, M. Guar Gum Oleate-graft-poly (methacrylic Acid) Hydrogel as a Colon-specific Controlled Drug Delivery Carrier. Carbohydr. Polym. 2017, 158, 51–57. DOI: 10.1016/j.carbpol.2016.11.092.
  • Lamprecht, A.; Ubrich, N.; Yamamoto, H.; Schäfer, U.; Takeuchi, H.; Maincent, P.; Kawashima, Y.; Lehr, C. M. Biodegradable Nanoparticles for Targeted Drug Delivery in Treatment of Inflammatory Bowel Disease. J. Pharmacol. Exp. Ther. 2001, 299(2), 775–781, (0022-3565/01/2992-775–781, PubMed  11602694).
  • Sharma, S.; Sinha, V. R. Current Pharmaceutical Strategies for Efficient Site Specific Delivery in Inflamed Distal Intestinal Mucosa. J. Controlled Release. 2018, 272, 97–106. DOI: 10.1016/j.jconrel.2018.01.003.
  • Yang, L.;. Biorelevant Dissolution Testing of Colon-specific Delivery Systems Activated by Colonic Microflora. J. Controlled Release. 2008, 125(2), 77–86. DOI: 10.1016/j.jconrel.2007.10.026.
  • Lamprecht, A.; Yamamoto, H.; Takeuchi, H.; Kawashima, Y. A pH-sensitive Microsphere System for the Colon Delivery of Tacrolimus Containing Nanoparticles. J. Controlled Release. 2005, 104(2), 337–346. DOI: 10.1016/j.jconrel.2005.02.011.
  • Kumar, B.; Kulanthaivel, S.; Mondal, A.; Mishra, S.; Banerjee, B.; Bhaumik, A.; Banerjee, I.; Giri, S. Mesoporous Silica Nanoparticle Based Enzyme Responsive System for Colon Specific Drug Delivery through Guar Gum Capping. Colloids Surf. B. 2017, 150, 352–361. DOI: 10.1016/j.colsurfb.2016.10.049.
  • Karimi, M.; Eslami, M.; Sahandi-Zangabad, P.; Mirab, F.; Farajisafiloo, N.; Shafaei, Z.; Ghosh, D.; Bozorgomid, M.; Dashkhaneh, F.; Hamblin, M. R. pH‐Sensitive Stimulus‐responsive Nanocarriers for Targeted Delivery of Therapeutic Agents. Wiley Interdisciplinary Reviews. Nanomed. Nanobiotechnol. 2016, 8(5), 696–716. DOI: 10.1002/wnan.1389.
  • Petersen, K.-U.; Jaspersen, D. Medication-induced Oesophageal Disorders. Expert Opin. Drug Saf. 2003, 2(5), 495–507.
  • Papich, M. G.; Martinez, M. N. Applying Biopharmaceutical Classification System (BCS) Criteria to Predict Oral Absorption of Drugs in Dogs: Challenges and Pitfalls. Aaps J. 2015, 17(4), 948–964. DOI: 10.1208/s12248-015-9743-7.
  • Lewis, K. S.; Han, N. H. Tramadol: A New Centrally Acting Analgesic. Am. J. Health-System Pharm. 1997, 54(6), 643–652. DOI: 10.1093/ajhp/54.6.643.
  • Alekya, T.; Narendar, D.; Mahipal, D.; Arjun, N.; Nagaraj, B. Design and Evaluation of Chronomodulated Drug Delivery of Tramadol Hydrochloride. Drug Res. 2018, 68(3), 174–180. DOI: 10.1055/s-0043-119072.
  • Joshi, M.;. Role of Eudragit in Targeted Drug Delivery. Int. J. Curr. Pharm. Res. 2013, 5(2), 58–62.
  • Khan, M. Z. I.; Prebeg, Ž.; Kurjaković, N. A pH-dependent Colon Targeted Oral Drug Delivery System Using Methacrylic Acid Copolymers: I. Manipulation of Drug Release Using Eudragit® L100-55 and Eudragit® S100 Combinations. J. Controlled Release. 1999, 58(2), 215–222. DOI: 10.1016/s0168-3659(98)00151-5.
  • Agarwal, D.; Ranawat, M. S.; Chauhan, C. S.; Kamble, R. Formulation and Charecterisation of Colon Targeted Ph Dependent Microspheres of Capecitabine for Colorectal Cancer. J. Drug Delivery Ther. 2013, 3(6), 215–222. DOI: 10.22270/jddt.v3i6.747.
  • Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. Graphene Oxide Sheets at Interfaces. J. Am. Chem. Soc. 2010, 132(23), 8180–8186. DOI: 10.1021/ja102777p.
  • Pandey, A. P.; Karande, K. P.; More, M. P.; Gattani, S. G.; Deshmukh, P. K. Graphene Based Nanomaterials: Diagnostic Applications. J. Biomed. Nanotechnol. 2013, 10(2), 179–204. DOI: 10.1166/jbn.2014.1773.
  • Chaudhari, N. S.; Pandey, A. P.; Patil, P. O.; Tekade, A. R.; Bari, S. B.; Deshmukh, P. K. Graphene Oxide Based Magnetic Nanocomposites for Efficient Treatment of Breast Cancer. Mater. Sci. Eng C. 2014, 37, 278–285. DOI: 10.1016/j.msec.2014.01.007.
  • More, M. P.; Chitalkar, R. V.; Bhadane, M. S.; Dhole, S. D.; Patil, A. G.; Patil, P. O.; Deshmukh, P. K. Development of Graphene-drug Nanoparticle Based Supramolecular Self Assembled pH Sensitive Hydrogel as Potential Carrier for Targeting MDR Tuberculosis. Mater. Technol. 2019, 34(6), 324–335. DOI: 10.1080/10667857.2018.1556468.
  • Wang, R.; Guo, W.; Li, X.; Liu, Z.; Liu, H.; Ding, S. Microfluidic Generation of 3D Graphene Microspheres for High-efficiency Adsorption. J. Mater. Sci. 2017, 52(24), 13930–13939. DOI: 10.1007/s10853-017-1487-6.
  • Vinothini, K.; Rajan, M. Investigation on the Use of Graphene as a Unique Drug Delivery Platform for Dissimilar Anticancer Drugs. Prog. Biosci. Bioeng. 2017, 1, 11–17. DOI: 10.29269/pbb2017.v1i1.2.
  • Rostami, M.; Aghajanzadeh, M.; Zamani, M.; Manjili, H. K.; Danafar, H. Sono-chemical Synthesis and Characterization of Fe 3 O 4@ mTiO 2-GO Nanocarriers for Dual-targeted Colon Drug Delivery. Res. Chem. Intermed. 2018, 44(3), 1889–1904. DOI: 10.1007/s11164-017-3204-0.
  • Nikam, A. N.; More, M. P.; Pandey, A. P.; Patil, P. O.; Patil, A. G.; Deshmukh, P. K. Design and Development of Thiolated Graphene Oxide Nanosheets for Brain Tumor Targeting. Int. J. Polym. Mater. Polym. Biomater. 2019, 1–11. doi:10.1080/00914037.2019.1596911.
  • Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable Aqueous Dispersions of Graphene Nanosheets. Nat. Nanotechnol. 2008, 3(2), 101. DOI: 10.1038/nnano.2007.451.
  • Guo, P.; Song, H.; Chen, X. Hollow Graphene Oxide Spheres Self-assembled by W/O Emulsion. J. Mater. Chem. 2010, 20(23), 4867–4874. DOI: 10.1039/b927302f.
  • Wang, Z.; Colombi Ciacchi, L.; Wei, G. Recent Advances in the Synthesis of Graphene-based Nanomaterials for Controlled Drug Delivery. Appl. Sci. 2017, 7(11), 1175. DOI: 10.3390/app7111175.
  • Lin, Y.-C.; Lin, C.-Y.; Chiu, P.-W. Controllable Graphene N-doping with Ammonia Plasma. Appl. Phys. Lett. 2010, 96(13), 133110. DOI: 10.1063/1.3368697.
  • Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. High Oxygen-reduction Activity and Durability of Nitrogen-doped Graphene. Energy Environ. Sci. 2011, 4(3), 760–764. DOI: 10.1039/c0ee00326c.
  • Küçük, A.; Kadıoğlu, Y. Determination of Tramadol Hydrochloride in Ampoule Dosage Forms by Using UV Spectrophotometric and HPLC-DAD Methods in Methanol and Water Media. Il Farmaco. 2005, 60(2), 163–169. DOI: 10.1016/j.farmac.2004.12.002.
  • Patil, P. O.; Bhandari, P. V.; Deshmukh, P. K.; Mahale, S. S.; Patil, A. G.; Bafna, H. R.; Patel, K. V.; Bari, S. B. Green Fabrication of Graphene-based Silver Nanocomposites Using Agro-waste for Sensing of Heavy Metals. Res. Chem. Intermed. 2017, 43(7), 3757–3773. DOI: 10.1007/s11164-016-2844-9.
  • Pei, S.; Wei, Q.; Huang, K.; Cheng, H.-M.; Ren, W. Green Synthesis of Graphene Oxide by Seconds Timescale Water Electrolytic Oxidation. Nat. Commun. 2018, 9(1), 145. DOI: 10.1038/s41467-017-02479-z.
  • Jain, V.; Jain, D.; Singh, R. Factors Effecting the Morphology of Eudragit S-100 Based Microsponges Bearing Dicyclomine for Colonic Delivery. J. Pharm. Sci. 2011, 100(4), 1545–1552. DOI: 10.1002/jps.22360.
  • Madgulkar, A. R.; Bhalekar, M. R.; Padalkar, R. R. Formulation Design and Optimization of Novel Taste Masked Mouth-dissolving Tablets of Tramadol Having Adequate Mechanical Strength. AAPS PharmSciTech. 2009, 10(2), 574–581. DOI: 10.1208/s12249-009-9237-y.
  • Patel, J. P.; Deshmukh, S.; Zhao, C.; Wamuo, O.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. An Analysis of the Role of Nonreactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. J. Polym. Sci. B Polym. Phys. 2017, 55(2), 206–213. DOI: 10.1002/polb.v55.2.
  • Patel, J. P.; Xiang, Z. G.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. Path to Achieving Molecular Dispersion in a Dense Reactive Mixture. J. Polym. Sci. B Polym. Phys. 2015, 53(21), 1519–1526. DOI: 10.1002/polb.23789.
  • Patel, J. P.; Xiang, Z. G.; Hsu, S. L.; Schoch, A. B.; Carleen, S. A.; Matsumoto, D. Characterization of the Crosslinking Reaction in High Performance Adhesives. Int. J. Adhes. Adhes. 2017, 78, 256–262. DOI: 10.1016/j.ijadhadh.2017.08.006.
  • More, M. P.; Ganguly, P. R.; Pandey, A. P.; Dandekar, P. P.; Jain, R. D.; Patil, P. O.; Deshmukh, P. K. Development of Surface Engineered Mesoporous Alumina Nanoparticles: Drug Release Aspects and Cytotoxicity Assessment. IET Nanobiotechnol. 2017, 11(6), 661–668. DOI: 10.1049/iet-nbt.2016.0225.
  • Sandor, M.; Bailey, N.; Mathiowitz, E. Characterization of Polyanhydride Microsphere Degradation by DSC. Polymer. 2002, 43(2), 279–288. DOI: 10.1016/S0032-3861(01)00612-7.
  • Ganure Ashok, L.; Dangi Amish, A.; Patel Pinkal Kumar, M.K.R.; Aravadiya Jigar, P. Preparation and Evaluation of Tramadol Hydrochloride Fast Dispersible Tablet by Using Compression Technique. IJPI’s J. Pharmaceutics Cosmetol. 2011, 1, 2.
  • Smyj, R.; Wang, X.-P.; Han, F. Tramadol Hydrochloride. In Profiles of Drug Substances, Excipients and Related Methodology; Elsevier, 2013; pp 463–494.
  • McAllister, M. J.; Li, J.-L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud’homme, R. K.; et al. Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite. Chem. Mater. 2007, 19(18), 4396–4404. DOI: 10.1021/cm0630800.
  • Maestrelli, F.; Cirri, M.; Corti, G.; Mennini, N.; Mura, P. Development of Enteric-coated Calcium Pectinate Microspheres Intended for Colonic Drug Delivery. Eur. J. Pharm. Biopharm. 2008, 69(2), 508–518. DOI: 10.1016/j.ejpb.2007.12.004.
  • Badhana, S.; Garud, N.; Garud, A. Colon Specific Drug Delivery of Mesalamine Using Eudragit S100-coated Chitosan Microspheres for the Treatment of Ulcerative Colitis. Int. Curr. Pharm. J. 2013, 2(3), 42–48. DOI: 10.3329/icpj.v2i3.13577.
  • Lorenzo-Lamosa, M.; Remuñán-López, C.; Vila-Jato, J. L.; Alonso, M. J. Design of Microencapsulated Chitosan Microspheres for Colonic Drug Delivery. J. Controlled Release. 1998, 52(1–2), 109–118. DOI: 10.1016/s0168-3659(97)00203-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.