78
Views
7
CrossRef citations to date
0
Altmetric
Articles

New semiconductor core-shell based on nano-rods core materials

ORCID Icon, &
Pages 630-641 | Received 28 Apr 2019, Accepted 24 Sep 2019, Published online: 29 Oct 2019

References

  • Al-Hussaini, A. S.;. Novel Benzidine and O-phenylenediamine Copolymer-matrix Microcomposites. J. Inorg. Organomet. Polym. Mater. 2018, 28, 871–879. DOI: 10.1007/s10904-017-0777-4.
  • Al-Hussaini, A. S.; Elias, A. M.; Abd El-Ghaffar, M. A. New Poly(aniline-co-o-phenylenediamine)/kaolinite Microcomposites for Water Decontamination. J. Polym. Environ. 2017, 25, 35–45. DOI: 10.1007/s10924-016-0782-7.
  • Al-Hussaini, A. S.;. Inexpensive Fabrication and Characterization of Crystalline Poly(o-anthranilic Acid-co-o-phenylenediamine) Emeraldine Base/bentonite Nanocomposites. Polym. Plast. Technol. Eng. 2016, 55, 1386–1392. DOI: 10.1080/03602559.2016.1163604.
  • Al-Hussaini, A. S.; Eltabie, K. R.; Rashad, M. E. E. One-pot Modern Fabrication and Characterization of TiO2@terpoly(aniline, Anthranilic Acid and O-phenylenediamine) Core-shell Nanocomposites via Polycondensation. Polymer. 2016, 101, 328–337. DOI: 10.1016/j.polymer.2016.08.104.
  • Al-Hussaini, A. S.;. New Polymeric Based Materials: Terpoly(aniline, Diphenyl Amine, and O-anthranilic Acid)/kaolinite Composites. Polym. Adv. Technol. 2016, 27, 1604–1608. DOI: 10.1002/pat.v27.12.
  • Al-Hussaini, A. S.;. In Situ Oxidative Copolymerization and Characterization of New Poly(benzidine-co-o-phenylenediamine)/kaolinite Microcomposites. Polym. Sci. Ser. B Polym. 2017, 59, 372–378. DOI: 10.1134/S1560090417030010.
  • Al-Hussaini, A. S.; Eldars, W. Non-conventional Synthesis and Antibacterial Activity of Poly(aniline-co-o-phenylenediamine)/bentonite Nanocomposites. Des. Monomers Polym. 2014, 17, 458–465. DOI: 10.1080/15685551.2013.867570.
  • Al-Hussaini, A. S.; Eldars, W. Cheap Synthesis, Characterization and Antibacterial Efficacy of New Copoly(o-nitroaniline-co-o-phenylenediamine) Emeraldine Base/bentonite Composites. J. Inorg. Organomet. Polym. Mater. 2016, 26, 691–701. DOI: 10.1007/s10904-016-0359-x.
  • Al-Hussaini, A. S.; Zoromba, M. S.; El-Ghamaz, N. A. In Situ Polymerization and Characterization of Aniline and O-anthranilic Acid copolymer/Pyrogenic Silica Nanocomposites. Polym. Plast. Technol. Eng. 2013, 52, 1089–1096. DOI: 10.1080/03602559.2013.763380.
  • Al-Hussaini, A. S.;. Environmentally Friendly Synthesis of Lightweight Terpolymer/hydrophilic Bentonite Composites for Water Decontamination. J. Inorg. Organomet. Polym. Mater. 2019. DOI: 10.1007/s10904-019-01196-y.
  • Al-Hussaini, A. S.;. New Crystalline Poly(aniline-co-benzidine)/bentonite Microcomposites: Synthesis and Characterization. Polym. Bull. 2019, 76, 323–337. DOI: 10.1007/s00289-018-2386-y.
  • Al-Hussaini, A. S.;. Modified Non-conventional Synthesis of New Terpoly(aniline, O-anthranilic Acid and O-phenylenediamine)/bentonite Composites. Polym. Plast. Technol. Eng. 2015, 54, 61–67. DOI: 10.1080/03602559.2014.935415.
  • Ha, J.-W.; Park, I. J.; Lee, S.-B.; Kim, D.-K. Preparation and Characterization of Core-Shell Particles Containing Perfluoroalkyl Acrylate in the Shell. Macromolecules. 2002, 35, 6811–6818. DOI: 10.1021/ma011692u.
  • Ossoss, K. M.; Hassan, M. E. R.; Al-Hussaini, A. S. Novel Fe2O3@PANI-o-PDA Core-shell Nanocomposites for Photocatalytic Degradation of Aromatic Dyes. J. Polym. Res. doi:10.1007/s10965-019-1856-8.
  • Al-Hussaini, A. S.; El-Bana, W. E.; El-Ghamaz, N. A. New Semiconducting Core-shell Nanocomposites. Compos. Interfaces. 2019. DOI: 10.1080/09276440.2019.1637237.
  • Jonesand, C. D.; Lyon, L. A. Shell-restricted Swelling and Core Compression in Poly(n-isopropylacrylamide) Core-shell Microgels. Macromolecules. 2003, 36, 1988–1993. DOI: 10.1021/ma021079q.
  • Ramli, R. A.; Laftah, W. A.; Hashim, S. Core-shell Polymers: A Review. RSC Adv. 2013, 3, 15543–15565. DOI: 10.1039/c3ra41296b.
  • Hendrickson, G. R.; Smith, M. H.; South, A. B.; Lyon, L. A. Design of Multiresponsive Hydrogel Particles and Assemblies. Adv. Funct. Mater. 2010, 20, 1697–1712. DOI: 10.1002/adfm.200902429.
  • Li, W.-H.; Stover, H. D. H. Monodisperse Cross-linked Core-shell Polymer Microspheres by Precipitation Polymerization. Macromolecules. 2000, 33, 4354–4360. DOI: 10.1021/ma9920691.
  • Peppas, N. A.; Bures, P.; Leobandung, W.; Ichikawa, H. Hydrogels in Pharmaceutical Formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46.
  • Khan, A. K.; Ray, B. C.; Dolui, S. K. Preparation of Core-Shell Emulsion Polymer and Optimization of Shell Composition with respect to Opacity of Paint Film. Prog. Org. Coat. 2008, 62, 65–70. DOI: 10.1016/j.porgcoat.2007.09.022.
  • Dimonie, V. L.; Daniels, E. S.; Shaffer, O. L.; El-Aasser, M. S. Control of Particle Morphology. In Emulsion Polymerization and Emulsion Polymers; Lovell, P., El-Aasser, M. S., Eds.; John Wiley and Sons: West Sussex England, 1997; pp 294.
  • Li, X.; Zuo, J.; Guo, Y.; Yuan, X. Preparation and Characterization of Narrowly Distributed Nanogels with Temperature-responsive Core and PH-responsive Shell. Macromolecules. 2004, 37, 10042–10046. DOI: 10.1021/ma048658a.
  • Ballauff, M.; Lu, Y. Smart” Nanoparticles: Preparation, Characterization and Applications. Polymer. 2007, 48, 1815–1823. DOI: 10.1016/j.polymer.2007.02.004.
  • Debnath, D.; Khatua, B. B. Preparation by Suspension Polymerization and Characterization of Polystyrene (ps)-poly(methyl Methacrylate) (PMMA) Core-shell Nanocomposites. Macromol. Res. 2011, 19(6), 519–527. DOI: 10.1007/s13233-011-0607-4.
  • Chen, Z.; Gang, T.; Zhang, K.; Zhang, J.; Chen, X.; Sun, Z.; Yang, B. Ag Nanoparticles-coated silica-PMMA Core-shell Microspheres and Hollow PMMA Microspheres with Ag Nanoparticles in the Interior Surfaces. Colloids Surf. A. 2006, 272(3), 151–156. DOI: 10.1016/j.colsurfa.2005.07.032.
  • Blackburn, W.; Lyon, L. Size Controlled Synthesis of Monodispersed, Core/shell Nanogels. Colloid Polym. Sci. 2008, 286, 563–569. DOI: 10.1007/s00396-007-1805-7.
  • Xiao, X. C.; Chu, L. Y.; Chen, W. M.; Wang, S.; Li, Y. Positively Thermos-sensitive Monodisperse Core-shell Microspheres. Adv. Funct. Mater. 2003, 13, 847–852. DOI: 10.1002/adfm.200304513.
  • Gan, D.; Lyon, L. A. Fluorescence Nonradiative Energy Transfer Analysis of Crosslinker Heterogeneity in Core-shell Hydrogel Nanoparticles. Anal. Chim. Acta. 2003, 496, 53–63. DOI: 10.1016/S0003-2670(03)00989-9.
  • Debnath, D.; Dhibar, A. K.; Khatua, B. B. Studies on the Morphology and Properties of PMMA-Organoclay Nanocomposites with Reference to the Manufacturing Techniques. Polym. Plast. Technol. Eng. 2010, 49(11), 1087–1094. DOI: 10.1080/03602559.2010.496386.
  • Zhang, K.; Zheng, L.; Zhang, X.; Chen, X.; Yang, B. Silica-PMMA Core-shell and Hollow Nanospheres. Colloids Surf. A. 2006, 277(1–3), 145–150. DOI: 10.1016/j.colsurfa.2005.11.049.
  • Al-Hussaini, A. S.; Eltabie, K. R.; Hassan, M. E. R. Fabrication of Core-shell Nanocomposites with Enhanced Photocatalytic Efficacy. Polym. Int. 2018, 67, 1419–1428. DOI: 10.1002/pi.2018.67.issue-10.
  • Yu, Y.; Che, B.; Si, Z.; Li, L.; Chen, W.; Xue, G. Carbon Nanotube/polyaniline Core-shell Nanowires Prepared by in Situ Inverse Microemulsion. Synth. Met. 2005, 150, 271–277. DOI: 10.1016/j.synthmet.2005.02.011.
  • Long, Y.; Chen, Z.; Zhang, X.; Zhang, J.; Liu, Z. Synthesis and Electrical Properties of Carbon Nanotube Polyaniline Composites. Appl. Phys. Lett. 2004, 85, 1796–1798. DOI: 10.1063/1.1786370.
  • Teoh, G. L.; Liew, K. Y.; Mahmood, W. A. K. Preparation of polyaniline-Al2O3 Composites Nanofibers with Controllable Conductivity. Mate. Lett. 2007, 61, 4947–4949. DOI: 10.1016/j.matlet.2007.03.094.
  • Xia, H.; Wang, Q. Preparation of Conductive Polyaniline/nanosilica Particle Composites through Ultrasonic Irradiation. J. Appl. Polym. Sci. 2003, 87, 1811–1817. DOI: 10.1002/(ISSN)1097-4628.
  • Posudievsky, O. Y.; Kurys, Y. I.; Pokhodenko, V. D. 12-phosphormolibdic Acid Doped polyaniline-V2O5 Composite. Synth. Met. 2004, 144, 107–111. DOI: 10.1016/j.synthmet.2004.02.009.
  • Kinyanjui, J. M.; Harris-Burr, R.; Wagner, J. G.; Wijeratne, N. R.; Hatchett, D. W. Hexachloroplatinate-initiated Synthesis of Polyaniline/platinum Composite. Macromolecules. 2004, 37, 8745–8753. DOI: 10.1021/ma0488313.
  • Sarma, T. K.; Chattopadhyay, A. One Pot Synthesis of Nanoparticles of Aqueous Colloidal Polyaniline and Its Au-nanoparticle Composite from Monomer Vapor. J. Phys. Chem. 2004, 108, 7837–7842. DOI: 10.1021/jp049348x.
  • Jorge, L.; Olmedo-Martínez,; Barbara Farías-Mancilla, I.; Vega-Rios, A.; Armando Zaragoza-Contreras, E. Poly(ortho-phenylenediamine-co-aniline) Based Copolymer with Improved Capacitance. J. Power Sources. 2017, 366, 233–240. DOI: 10.1016/j.jpowsour.2017.09.030.
  • Rahman, A. U.; Choudhary, M. I.; Thomsen, W. J. Bioassay Techniques for Drug Development; Harwood academic publishers: The Netherlands, 2001.
  • Zhang, D.;. Preparation of Core-shell Structured Alumina-polyaniline Particles and Their Application for Corrosion Protection. J. Appl. Polym. Sci. 2006, 101, 4372–4377. DOI: 10.1002/(ISSN)1097-4628.
  • Zhu, J.; Wei, S.; Zhang, L.; Mao, Y.; Ryu, J.; Haldolaarachchige, N.; Younge, D. P.; Guo, Z. Electrical and Dielectric Properties of polyaniline-Al2O3 Nanocomposites Derived from Various Al2O3 Nanostructures. J. Mater. Chem. 2011, 21, 3952–3959. DOI: 10.1039/c0jm03908j.
  • Vasei, M.; Das, P.; Cherfouth, H.; Marsan, B.; Claverie, J. P. TiO2@core-shell Nanoparticles Formed by Polymeric Nano-encapsulation. Front. Chem. 2014, 2, 47–67. DOI: 10.3389/fchem.2014.00047.
  • Jang, J.; Ha, J.; Lim, B. Synthesis and Characterization of Monodisperse Silica Polyaniline Core-shell Nanoparticles. Chem. Commun. 2006, 162, 1622–1624. DOI: 10.1039/b600167j.
  • Ros, T. G.; van Dillen, A. J.; Geus, J. W.; Koningsberger, D. C. Modification of Carbon Nanofibres for the Immobilization of Metal Complexes: A Case Study with Rhodium and Anthranilic Acid. Chem. Eur. J. 2002, 8, 2868–2878. DOI: 10.1002/1521-3765(20020703)8:13<2868::AID-CHEM2868>3.0.CO;2-C.
  • Al-Hussaini, A. S.; Klapper, M.; Pakula, T.; Müllen, K. Poly(imino Ketone)s as New High-performance Polymers. Macromolecules. 2004, 37, 8269–8277. DOI: 10.1021/ma0490101.
  • Al-Hussaini, A. S.; Elias, A. M.; Abd El-Ghaffar, M. A. New Terpolymer-matrix Microcomposites for Heavy Metal Removal. J. Macromol. Sci. A. 2019, 56, 887–898. DOI: 10.1080/10601325.2019.1617635.
  • Al-Hussaini, A. S.;. Synthesis and Characterization of New Thermally Stable Polymers as New High-performance Engineering Plastics. High Perform. Polym. 2014, 26, 166–174. DOI: 10.1177/0954008313503667.
  • Adhikari, S.; Banerji, P. Enhanced Conductivity in Iodine Doped Polyaniline Thin Film Formed by Thermal Evaporation. Thin Solid Films. 2010, 518, 5421–5425. DOI: 10.1016/j.tsf.2010.03.080.
  • El-Ghamaz, N. A.; El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Seyam, H. A. Optical Properties of Thermally Evaporated 4-(4-nitrobenzalideneamino) Antipyrine Schiff Base Thin Films. Solid State Sci. 2013, 19, 19–26. DOI: 10.1016/j.solidstatesciences.2013.01.015.
  • Sanches, E. A.; Carolino, A. S.; Dos Santos, A. L.; Fernandes, E. G. R.; Trichês, D. M.; Mascarenhas, Y. P. The Use of Le Bail Method to Analyze the Semicrystalline Pattern of a Nanocomposite Based on Polyaniline Emeraldine-salt Form and α-Al2O3. Adv. Mater. Sci. Eng. 2015. DOI: 10.1155/2015/375312.
  • El-Ghamaz, N. A.; El-Sonbati, A. Z.; Diab, M. A.; El-Bindary, A. A.; Awad, M. K.; Morgan, S. M. Dielectrical, Conduction Mechanism and Thermal Properties of Rhodanine Azodyes. Mater. Sci. Semicond. Process. 2014, 19, 150–162. DOI: 10.1016/j.mssp.2013.12.005.
  • Zeyada, H. M.; El-Nahass, M. M. Electrical Properties and Dielectric Relaxation of Thermally Evaporated Zinc Phthalocyanine Thin Films. Appl. Surf. Sci. 2008, 254, 1852–1858. DOI: 10.1016/j.apsusc.2007.07.175.
  • Sirelkhatim, A.; Mahmud, S.; Seeni, A.; Kaus, N. H. M.; Ann, L. C.; Bakhori, S. K. M.; Hasan, H.; Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242. DOI: 10.1007/s40820-015-0040-x.
  • Boomi, P.; Prabu, H. G.; Mathiyarasu, J. Synthesis and Characterization of polyaniline/Ag-Pt Nanocomposite for Improved Antibacterial Activity. Colloids Surf. B. 2013, 103, 9–14. DOI: 10.1016/j.colsurfb.2012.10.044.
  • Panaccek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Veccerova, R.; Pizurova, N.; Sharma, V. K.; Nevecna, T.; Zboril, R. Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity. J. Phys. Chem. B. 2006, 110, 16248–16253. DOI: 10.1021/jp063826h.
  • Xiaoxi, L.; Mengxi, S.; Liangchao, L.; Ru, Q.; Keyu, C.; Qiushi, X.; Feng, X. Preparation and Antibacterial Activities of polyaniline/Cu0.05Zn0.95O Nanocomposites. Dalton Trans. 2012, 41, 2804–2811. DOI: 10.1039/c2dt11823h.
  • Kateřina, M.; Petr, P.; Zuzana, R.; Ondřej, K. Antibacterial and Antifungal Activities of Silver, Copper and Zinc Montmorillonites. Appl. Clay Sci. 2011, 53, 642–645. DOI: 10.1016/j.clay.2011.05.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.