208
Views
6
CrossRef citations to date
0
Altmetric
Articles

Influence of DCP content on the toughness and morphology of fully biobased ternary PLA/NR-PMMA/NR TPVs with co-continuous phase structure

, , , &
Pages 674-684 | Received 02 Aug 2019, Accepted 09 Nov 2019, Published online: 26 Nov 2019

References

  • Zhu, Y. Q.; Romain, C.; Williams, C. K. Sustainable Polymers from Renewable Resources. Nature. 2016, 540, 354–362. DOI: 10.1038/nature21001.
  • Schneiderman, D. K.; Hillmyer, M. A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules. 2017, 50, 3733–3749. DOI: 10.1021/acs.macromol.7b00293.
  • Ray, S. S.; Okamoto, M. Biodegradable Polylactide and Its Nanocomposites: Opening a New Dimension for Plastics and Composites. Macromol. Rapid Commun. 2003, 24, 815–840. DOI: 10.1002/(ISSN)1521-3927.
  • Anderson, K. S.; Schreck, K. M.; Hillmyer, M. A. Toughening Polylactide. Polym. Rev. 2008, 48, 85–108. DOI: 10.1080/15583720701834216.
  • Huang, J. R.; Cao, L. M.; Yuan, D. S.; Chen, Y. K. Design of Novel Self-Healing Thermoplastic Vulcanizates Utilizing Thermal/Magnetic/Light-Triggered Shape Memory Effects. ACS Appl. Mater. Interfaces. 2018, 10, 40996–41002. DOI: 10.1021/acsami.8b18212.
  • Liu, H. Z.; Zhang, J. W. Research Progress in Toughening Modification of poly(lactic Acid). J. Polym. Sci. B Polym. Phys. 2011, 49, 1051–1083. DOI: 10.1002/polb.v49.15.
  • Balakrishnan, H.; Hassan, A.; Imran, M.; Wahit, M. U. Toughening of Polylactic Acid Nanocomposites: A Short Review. Polym.-Plast. Technol. Eng. 2012, 51, 175–192. DOI: 10.1080/03602559.2011.618329.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Tsuji, H.;. poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications. Macromol. Biosci. 2005, 5, 569–597. DOI: 10.1002/(ISSN)1616-5195.
  • Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. poly(lactic Acid) Modifications. Prog. Polym. Sci. 2010, 35, 338–356. DOI: 10.1016/j.progpolymsci.2009.12.003.
  • Ahmed, J.; Varshney, S. K. Polylactides-Chemistry, Properties and Green Packaging Technology: A Review. Int. J. Food Prop. 2011, 14, 37–58. DOI: 10.1080/10942910903125284.
  • Hamad, K.; Kaseem, M.; Yang, H. W.; Deri, F.; Ko, Y. G. Properties and Medical Applications of Polylactic Acid: A Review. Express Polym. Lett. 2015, 9, 435–455. DOI: 10.3144/expresspolymlett.2015.42.
  • Nagarajan, V.; Mohanty, A. K.; Misra, M. Perspective on Polylactic Acid (PLA) Based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustain. Chem. Eng. 2016, 4, 2899–2916. DOI: 10.1021/acssuschemeng.6b00321.
  • Huang, J. R.; Fan, J. F.; Yin, S. H.; Chen, Y. K. Design of Remotely, Locally Triggered Shape-memory Materials Based on Bicontinuous polylactide/epoxidized Natural Rubber Thermoplastic Vulcanizates via Regulating the Distribution of Ferroferric Oxide. Compos. Sci. Technol. 2019, 182, 107732. DOI: 10.1016/j.compscitech.2019.107732.
  • Shi, Y.-D.; Cheng, Y.-H.; Chen, Y.-F.; Zhang, K.; Zeng, J.-B.; Wang, M. Morphology, Rheological and Crystallization Behavior in Thermoplastic Polyurethane Toughed poly(L-lactide) with Stereocomplex Crystallites. Polym. Test. 2017, 62, 1–12. DOI: 10.1016/j.polymertesting.2017.06.013.
  • Zhang, K.; Peng, J.-K.; Shi, Y.-D.; Chen, Y.-F.; Zeng, J.-B.; Wang, M. Control of the Crystalline Morphology of poly(L-lactide) by Addition of High-melting-point poly(L-lactide) and Its Effect on the Distribution of Multiwalled Carbon Nanotubes. J. Phys. Chem. B. 2016, 120, 7423–7437. DOI: 10.1021/acs.jpcb.6b05524.
  • Fang, H.; Jiang, F.; Wu, Q.; Ding, Y.; Wang, Z. Supertough Polylactide Materials Prepared through in Situ Reactive Blending with PEG-based Diacrylate Monomer. ACS Appl. Mater. Interfaces. 2014, 6, 13552–13563. DOI: 10.1021/am502735q.
  • Bai, H. W.; Huang, C. M.; Xiu, H.; Gao, Y.; Zhang, Q.; Fu, Q. Toughening of Poly(Llactide) with Poly (ε-caprolactone): Combined Effects of Matrix Crystallization and Impact Modifier Particle Size. Polymer. 2013, 54, 5257–5266. DOI: 10.1016/j.polymer.2013.07.051.
  • Yu, F.; Huang, H.-X. Simultaneously Toughening and Reinforcing poly(lactic acid)/thermoplastic Polyurethane Blend via Enhancing Interfacial Adhesion by Hydrophobic Silica Nanoparticles. Polym. Test. 2015, 45, 107–113. DOI: 10.1016/j.polymertesting.2015.06.001.
  • Sun, Y.; Yang, L. P.; Lu, X. H.; He, C. B. Biodegradable and Renewable poly(lactide) Lignin Composites: Synthesis, Interface and Toughening Mechanism. J. Mater. Chem. A. 2015, 3, 3699–3709. DOI: 10.1039/C4TA05991C.
  • Hassouna, F.; Raquez, J.-M.; Addiego, F.; Toniazzo, V.; Dubois, P.; Ruch, D. New Development on Plasticized poly(lactide): Chemical Grafting of Citrate on PLA by Reactive Extrusion. Eur. Polym. J. 2012, 48, 404–415. DOI: 10.1016/j.eurpolymj.2011.12.001.
  • Zhang, L.; Li, Y. F.; Wang, H. H.; Qiao, Y. D.; Chen, J. Z.; Cao, S. K. Strong and Ductile poly(lactic Acid) Nanocomposite Films Reinforced with Alkylated Graphene Nanosheets. Chem. Eng. J. 2015, 264, 538–546. DOI: 10.1016/j.cej.2014.11.066.
  • Jiang, J. D.; Su, L. L.; Zhang, K.; Wu, G. Z. Rubber‐toughened PLA Blends with Low Thermal Expansion. J. Appl. Polym. Sci. 2013, 128, 3993–4000. DOI: 10.1002/app.v128.6.
  • Zhao, Q. N.; Ding, Y.; Yang, B.; Ning, N. N.; Fu, Q. Highly Efficient Toughening Effect of Ultrafine Full-vulcanized Powdered Rubber on poly(lactic acid)(PLA). Polym. Test. 2013, 32, 299–305. DOI: 10.1016/j.polymertesting.2012.11.012.
  • Kluckhohn, C.;. Toughness Enhancement of poly(lactic Acid) by Melt Blending with Natural Rubber. J. Appl. Polym. Sci. 2012, 124, 5027–5036.
  • Cao, L. M.; Liu, C.; Zou, D. J.; Zhang, S. D.; Chen, Y. K. Using cellulose nanocrystals as sustainable additive to enhance mechanical and shape memory properties of PLA/ENR thermoplastic vulcanizates. Carbohyd. Polym. 2019, DOI: 10.1016/j.carbpol.2019.115618.
  • Stoclet, G.; Seguela, R.; Lefebvre, J. M. Morphology, Thermal Behavior and Mechanical Properties of Binary Blends of Compatible Biosourced Polymers: Polylactide/polyamide11. Polymer. 2011, 52, 1417–1425.
  • Pongtanayut, K.; Thongpin, C.; Santawitee, O. The Effect of Bubber on Morphology, Thermal Properties and Mechanical Properties of PLA/NR and PLA/ENR Blends. Energy Procedia. 2013, 34, 888–897.
  • Zeng, J. B.; Li, K. A.; Du, A. K. Compatibilization Strategies in poly(lactic Acid) Based Blends. RSC Adv. 2015, 5, 32546–32565.
  • Liu, G. C.; He, Y. S.; Zeng, J. B.; Li, Q. T.; Wang, Y. Z. Fully Biobased and Supertough Polylactide-based Thermoplastic Vulcanizates Fabricated by Peroxide-induced Dynamic Vulcanization and Interfacial Compatibilization. Biomacromolecules. 2014, 15, 4260–4271.
  • Zhang, N.; Lu, X. Morphology and Properties of Super-toughened Bio-based poly(lactic acid)/poly(ethylene-co-vinyl Acetate) Blends by Peroxide-induced Dynamic Vulcanization and Interfacial Compatibilization. Polym. Test. 2016, 56, 354–363.
  • Huang, J. R.; Cao, L. M.; Yuan, D. S.; Chen, Y. K. Design of Multi-Stimuli-Responsive Shape Memory Biobased PLA/ENR/Fe3O4 TPVs with Balanced Stiffness-Toughness Based on Selective Distribution of Fe3O4. ACS Sustainale Chem. Eng. 2019, 7, 2304fpage–2315.
  • Yuan, D. S.; Chen, Z. H.; Xu, C. H.; Chen, K. L.; Chen, Y. K. Fully Biobased Shape Memory Material Based on Novel Cocontinuous Structure in poly(lactic acid)/natural Rubber TPVs Fabricated via Peroxide-induced Dynamic Vulcanization and in Situ Interfacial Compatibilization. ACS Sustain. Chem. Eng. 2015, 3, 2856–2865.
  • Chen, Y. K.; Wang, W. T.; Yuan, D. S.; Xu, C. H.; Cao, L. M.; Liang, X. Q. Bio-based PLA/NR-PMMA/NR Ternary Thermoplastic Vulcanizates with Balanced Stiffness and Toughness: “Soft–Hard” Core–Shell Continuous Rubber Phase, in Situ Compatibilization, and Properties. ACS Sustain. Chem. Eng. 2018, 6, 6488–6496.
  • Liu, H. Z.; Chen, F.; Liu, B.; Estep, G.; Zhang, J. W. Super Toughened poly(lactic Acid) Ternary Blends by Simultaneous Dynamic Vulcanization and Interfacial Compatibilizaion. Macromolecules. 2010, 43, 6058–6066.
  • Liu, H. Z.; Song, W. J.; Chen, F.; Guo, L.; Zhang, J. W. Interaction of Microstructure and Interfacial Adhesion on Impact Performance of Polylactide (PLA) Ternary Blends. Macromolecules. 2011, 44, 1513–1522.
  • Liu, H. Z.; Guo, L.; Guo, X. J.; Zhang, J. W. Effects of Reactive Blending Temperature on Impact Toughness of poly(lactic Acid) Ternary Blends. Polymer. 2012, 53, 272–276.
  • Cao, L. M.; Fan, J. F.; Huang, J. R.; Chen, Y. K. A Robust and Stretchable Cross-linked Rubber Network with Recyclable and Self-healable Capabilities Based on Dynamic Covalent Bonds. J. Mater. Chem. A. 2019, 7, 4922–4933.
  • Cao, L. M.; Huang, J. R.; Chen, Y. K. Dual Cross-linked Epoxidized Natural Rubber Reinforced by Tunicate Cellulose Nanocrystals with Improved Strength and Extensibility. ACS Sustainable Chem. Eng. 2018, 6, 14802–14811.
  • Chen, Y. K.; Yuan, D. S.; Xu, C. H. Dynamically Vulcanized Biobased polylactide/natural Rubber Blend Material with Continuous Cross-linked Rubber Phase. ACS Appl. Mater. Interfaces. 2014, 6, 3811–3816.
  • Rosli, N. A.; Ahmad, I.; Anuar, F. H.; Abdullah, I. Mechanical and Thermal Properties of Natural Rubber-modified poly(lactic Acid) Compatibilized with Telechelic Liquid Natural Rubber. Polym. Test. 2016, 54, 196–202.
  • Wu, N. J.; Zhang, H.; Fu, G. L. Super-tough poly(lactide) Thermoplastic Vulcanizates Based on Modified Natural Rubber. ACS Sustain. Chem. Eng. 2017, 5, 78–84.
  • Si, W. J.; Yuan, W. Q.; Li, Y. D.; Chen, Y. K.; Zeng, J. B. Tailoring Toughness of Fully Biobased poly(lactic acid)/natural Rubber Blends through Dynamic Vulcanization. Polym. Test. 2018, 65, 249–255.
  • Xu, C. H.; Cao, L. M.; Lin, B. F.; Liang, X. Q.; Chen, Y. K. Design of Self-healing Supramolecular Rubbers by Introducing Ionic Cross-links into Natural Rubber via a Controlled Vulcanization. ACS Appl. Mater. Interfaces. 2016, 8, 17728–17737.
  • Chen, Y. K.; Huang, X. H.; Gong, Z.; Xu, C. H.; Mou, W. J. Fabrication of High Performance Magnetic Rubber from NBR and Fe3O4 via In-situ Compatibilization with Zinc Dimethacrylate. Ind. Eng. Chem. Res. 2017, 56, 183–190.
  • He, Y.; Zhao, T. H.; Li, Y. D.; Wang, M.; Zeng, J. B. Toughening Polylactide by Dynamic Vulcanization with Castor Oil and Different Types of Diisocyanates. Polym. Test. 2017, 59, 470–477.
  • Nakason, C.; Pechurai, W.; Sahakaro, K.; Kaesaman, A. Rheological, Thermal, and Curing Properties of Natural rubber-g-poly(methyl Methacrylate). J. Appl. Polym. Sci. 2006, 99, 1600–1614.
  • Yuan, D. S.; Xu, C. H.; Chen, Z. H.; Chen, Y. K. Crosslinked Bicontinuous Biobased polylactide/natural Rubber Materials: Super Toughness, “Net-like”-structure of NR Phase and Excellent Interfacial Adhesion. Polym. Test. 2014, 38, 73–80.
  • Kang, H. L.; Hu, X. R.; Li, M. Q.; Zhang, L. Q.; Wu, Y. P.; Ning, N. Y.; Tian, M. Novel Biobased Thermoplastic Elastomer Consisting of Synthetic Polyester Elastomer and Polylactide by in Situ Dynamical Crosslinking Method. RSC Adv. 2015, 5, 23498–23507.
  • Ma, P. M.; Xu, P. W.; Zhai, Y. H.; Dong, W. F.; Zhang, Y.; Chen, M. Q. Biobased poly(lactide)/ethylene-co-vinyl Acetate Thermoplastic Vulcanizates: Morphology Evolution, Superior Properties, and Partial Degradability. ACS Sustain. Chem. Eng. 2015, 3, 2211–2219.
  • Zeng, J. B.; Zhu, Q. Y.; Li, Y. D.; Qiu, Z. C.; Wang, Y. Z. Unique crystalline/crystalline Polymer Blends of poly(ethylene Succinate) and poly(p-dioxanone): Miscibility and Crystallization Behaviors. J. Phys. Chem. B. 2010, 114, 14827–14833.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.