86
Views
2
CrossRef citations to date
0
Altmetric
Articles

Preparation and performance of poly(lactic acid)/amidated ammonium citrate intercalated saponite nanocomposites

&
Pages 809-821 | Received 08 Sep 2019, Accepted 17 Nov 2019, Published online: 26 Nov 2019

References

  • Singla, R. K.; Maiti, S. N.; Ghosh, A. K. Crystallization, Morphological, and Mechanical Response of Poly (Lactic Acid)/Lignin-Based Biodegradable Composites. Polym. Plast. Technol. Eng. 2016, 55, 475–485. DOI: 10.1080/03602559.2015.1098688.
  • Yang, J.; Nie, S. Effects of Calcium Sulfate Whisker on the Mechanical Property, Morphological Structure and Thermal Degradation of Poly (Lactic Acid) Composites. Polym. Degrad. Stab. 2017, 144, 270–280. DOI: 10.1016/j.polymdegradstab.2017.08.031.
  • Phuong, V. T.; Coltelli, M. B.; Cinelli, P.; Cifelli, M.; Verstichel, S.; Lazzeri, A. Compatibilization and Property Enhancement of Poly (Lactic Acid)/Polycarbonate Blends through Triacetin-Mediated Interchange Reactions in the Melt. Polymer. 2014, 55, 4498–4513. DOI: 10.1016/j.polymer.2014.06.070.
  • Vijayarajan, S.; Selke, S. E.; Matuana, L. M. Continuous Blending Approach in the Manufacture of Epoxidized Soybean‐Plasticized Poly (Lactic Acid) Sheets and Films. Macromol. Mater. Eng. 2014, 299, 622–630. DOI: 10.1002/mame.201300226.
  • Jaratrotkamjorn, R.; Khaokong, C.; Tanrattanakul, V. Toughness Enhancement of Poly (Lactic Acid) by Melt Blending with Natural Rubber. J. Appl. Polym. Sci. 2012, 124, 5027–5036.
  • Han, L.; Han, C.; Dong, L. Morphology and Properties of the Biosourced Poly (Lactic Acid)/Poly (Ethylene) Oxide‐b‐Amide‐12) Blends. Polym. Compos. 2013, 34, 122–130. DOI: 10.1002/pc.22383.
  • Sharma, S.; Singh, A. A.; Majumdar, A.; Butola, B. S. Tailoring the Mechanical and Thermal Properties of Polylactic Acid-Based Bionanocomposite Films Using Halloysite Nanotubes and Polyethylene Glycol by Solvent Casting Process. J. Mater. Sci. 2019, 54, 8971–8983. DOI: 10.1007/s10853-019-03521-9.
  • Xi, W.; Qian, L.; Qiu, Y.; Chen, Y. Flame‐Retardant Behavior of Bi‐Group Molecule Derived from Phosphaphenanthrene and Triazine Groups on Polylactic Acid. Polym. Adv. Technol. 2016, 27, 781–788. DOI: 10.1002/pat.v27.6.
  • Chen, Y.; Wang, W.; Yuan, D.; Xu, C.; Cao, L.; Liang, X. NR-PMMA/NR Ternary Thermoplastic Vulcanizates with Balanced Stiffness and Toughness: “Soft–Hard” Core–Shell Continuous Rubber Phase. Situ Compatibilization, and Properties. ACS Sustainable Chem. Eng. 2018, 6, 6488–6496. DOI: 10.1021/acssuschemeng.8b00267.
  • Zhu, J.; Uhl, F. M.; Morgan, A. B.; Wilkie, C. A. Studies on the Mechanism by Which the Formation of Nanocomposites Enhances Thermal Stability. Chem. Mater. 2001, 13, 4649–4654. DOI: 10.1021/cm010451y.
  • Paul, M. A.; Alexandre, M.; Degée, P.; Henrist, C.; Rulmont, A.; Dubois, P. New Nanocomposite Materials Based on Plasticized Poly (L-lactide) and Organo-Modified Montmorillonites: Thermal and Morphological Study. Polymer. 2003, 44, 443–450. DOI: 10.1016/S0032-3861(02)00778-4.
  • Nam, J. Y.; Sinha Ray, S.; Okamoto, M. Crystallization Behavior and Morphology of Biodegradable Polylactide/Layered Silicate Nanocomposite. Macromolecules. 2003, 36, 7126–7131. DOI: 10.1021/ma034623j.
  • Wu, D.; Wu, L.; Zhou, W.; Zhang, M.; Yang, T. Crystallization and Biodegradation of Polylactide/Carbon Nanotube Composites. Polym. Eng. Sci. 2010, 50, 1721–1733. DOI: 10.1002/pen.v50:9.
  • Katiyar, V.; Gerds, N.; Koch, C. B.; Risbo, J.; Hansen, H. C. B.; Plackett, D. Poly L-Lactide-Layered Double Hydroxide Nanocomposites via in Situ Polymerization of L-Lactide. Polym. Degrad. Stab. 2010, 95, 2563–2573. DOI: 10.1016/j.polymdegradstab.2010.07.031.
  • Morfis, S.; Philippopoulos, C.; Papayannakos, N. Application of Al-pillared Clay Minerals as Catalytic Carriers for the Reaction of NO with CO. Appl. Clay. Sci. 1998, 13, 203–212. DOI: 10.1016/S0169-1317(98)00022-2.
  • Su, X.; Zhang, G.; Xu, K.; Wang, J.; Song, C.; Wang, P. The Effect of MMT/Modified MMT on the Structure and Performance of the Superabsorbent Composite. Polym. Bull. 2008, 60, 69–78. DOI: 10.1007/s00289-007-0843-0.
  • Shi, K.; Bai, Z. H.; Su, T. T.; Wang, Z. Y. Selective Enzymatic Degradation and Porous Morphology of Poly (Butylene Succinate)/Poly (Lactic Acid) Blends. Int. J. Biol. Macromol. 2019, 126, 436–442. DOI: 10.1016/j.ijbiomac.2018.12.168.
  • Xi, X.; Zhen, W.; Bian, S. Preparation and Properties of Polylactic Acid/N-(2-Hydroxyl) Propyl-3-Trimethyl Ammonium Chitosan Chloride-Intercalated Saponite Nanocomposites. Iran. Polym. J. 2015, 24(3), 243–252. DOI: 10.1007/s13726-015-0322-7.
  • Niu, W.; Wu, S.; Zhang, S. Utilizing the Amidation Reaction to Address the “Cooperative effect” of Carboxylic Acid/Amine on the Size, Shape, and Multicolor Output of Fluoride up Conversion Nanoparticles. J. Mater. Chem. 2011, 21, 10894–10902. DOI: 10.1039/c1jm10985e.
  • Xu, Y.; Wang, Y.; Xu, W.; Cao, C.; Liu, C.; Shen, C. Crystallization Behavior and Nucleation Analysis of Isotactic Polypropylene with a Multiamide Nucleating Agent. Polym. Test. 2014, 36, 62–68. DOI: 10.1016/j.polymertesting.2014.03.015.
  • Huang, W.; Hou, B.; Liu, M.; Li, Z. Improvement in Tribological Performances of Magnesium Alloy Using Amide Compounds as Lubricating Additives during Sliding. Tribol. Lett. 2005, 18, 445–451. DOI: 10.1007/s11249-004-3596-z.
  • Tang, Z.; Zhang, C.; Liu, X.; Zhu, J. The Crystallization Behavior and Mechanical Properties of Polylactic Acid in the Presence of a Crystal Nucleating Agent. J. Appl. Polym. Sci. 2012, 125, 1108–1115. DOI: 10.1002/app.v125.2.
  • Zhan, K. J.; Yang, W.; Yue, L.; Xie, B. H.; Yang, M. B.; MWCNTs Supported, N. N’-dicyclohexyl-1, 5-diamino-2, 6-naphthalenedicarboxamide: A Novel β-Nucleating Agent for Polypropylene. J. Macromol. Sci. B. 2012, 51, 2412–2427. DOI: 10.1080/00222348.2012.676366.
  • Ramirez, J. H.; Costa, C. A.; Madeira, L. M.; Mata, G.; Vicente, M. A.; Rojas-Cervantes, M. L.; Martín-Aranda, R. M. Fenton-Like Oxidation of Orange II Solutions Using Heterogeneous Catalysts Based on Saponite Clay. Appl. Catal. B-Environ. 2007, 71, 44–56. DOI: 10.1016/j.apcatb.2006.08.012.
  • Meng, Y.; Yao, C.; Xue, S.; Yang, H. Application of Fourier Transform Infrared (FT-IR) Spectroscopy in Determination of Microalgal Compositions. Bioresour. Technol. 2014, 151, 347–354. DOI: 10.1016/j.biortech.2013.10.064.
  • Liu, P.; Zhen, W. Structure‐Property Relationship, Rheological Behavior, and Thermal Degradability of Poly (Lactic Acid)/Fulvic Acid Amide Composites. Polym. Adv. Technol. 2018, 29, 2192–2203. DOI: 10.1002/pat.v29.8.
  • Sivam, A. S.; Sun-Waterhouse, D.; Perera, C. O.; Waterhouse, G. I. N. Application of FT-IR and Raman Spectroscopy for the Study of Biopolymers in Breads Fortified with Fibre and Polyphenols. Food Res. Int. 2013, 50, 574–585. DOI: 10.1016/j.foodres.2011.03.039.
  • Hartono, T.; Wang, S.; Ma, Q.; Zhu, Z. Layer Structured Graphite Oxide as a Novel Adsorbent for Humic Acid Removal from Aqueous Solution. J. Colloid. Interf. Sci. 2009, 333, 114–119. DOI: 10.1016/j.jcis.2009.02.005.
  • Kim, Y. J.; Park, C. R. Analysis of Problematic Complexing Behavior of Ferric Chloride with N, N-Dimethylformamide Using Combined Techniques of FT-IR, XPS, and TGA/DTG. Inorg. Chem. 2002, 41, 6211–6216. DOI: 10.1021/ic011306p.
  • Sathe, S. N.; Devi, S.; Rao, G. S.; Rao, K. V. Relationship between Morphology and Mechanical Properties of Binary and Compatibilized Ternary Blends of Polypropylene and Nylon 6. J. Appl. Polym. Sci. 1996, 61, 97–107. DOI: 10.1002/(ISSN)1097-4628.
  • Shi, X.; Zhang, G.; Phuong, T.; Lazzeri, A. Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly (Lactic Acid). Molecules. 2015, 20, 1579–1593. DOI: 10.3390/molecules20011579.
  • Zhang, K.; Nagarajan, V.; Misra, M.; Mohanty, A. K. Super Toughened Renewable PLA Reactive Multiphase Blends System: Phase Morphology and Performance. ACS Appl. Mater. Inter. 2014, 6, 12436–12448. DOI: 10.1021/am502337u.
  • Li, B.; Dong, F. X.; Wang, X. L.; Yang, J.; Wang, D. Y.; Wang, Y. Z. Organically Modified Rectorite Toughened Poly (Lactic Acid): Nanostructures, Crystallization and Mechanical Properties. Eur. Polym. J. 2009, 45, 2996–3003. DOI: 10.1016/j.eurpolymj.2009.08.015.
  • Balakrishnan, H.; Hassan, A.; Wahit, M. U.; Yussuf, A. A.; Razak, S. B. A. Novel Toughened Polylactic Acid Nanocomposite: Mechanical, Thermal and Morphological Properties. Mater. Design. 2010, 31, 3289–3298. DOI: 10.1016/j.matdes.2010.02.008.
  • Basu, S. K.; Fasulo, P. D.; Rodgers, W. R. Stereology‐Based Quantitative Characterization of Dispersion from TEM Micrographs of Polymer-Clay Nanocomposites. J. Appl. Polym. Sci. 2011, 119, 396–411. DOI: 10.1002/app.v119:1.
  • Tsou, C. H.; Suen, M. C.; Yao, W. H.; Yeh, J. T.; Wu, C. S.; Tsou, C. Y.; Hung, W. S. Preparation and Characterization of Bioplastic-Based Green Renewable Composites from Tapioca with Acetyl Tributyl Citrate as a Plasticizer. Materials. 2014, 7, 5617–5632. DOI: 10.3390/ma7085617.
  • LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J. Polymer-Layered Silicate Nanocomposites: An Overview. Appl. Clay. Sci. 1999, 15, 11–29. DOI: 10.1016/S0169-1317(99)00017-4.
  • Lagaly, G.; Dékany, I. Adsorption on Hydrophobized Surfaces: Clusters and Self-Organization. Adv. Colloid. Interface Sci. 2005, 114, 189–204. DOI: 10.1016/j.cis.2004.07.015.
  • Sinha Ray, S.; Okamoto, K.; Okamoto, M. Structure-Property Relationship in Biodegradable Poly (Butylene Succinate)/Layered Silicate Nanocomposites. Macro-molecules. 2003, 36, 2355–2367. DOI: 10.1021/ma021728y.
  • Cheng, S.; Lau, K. T.; Liu, T.; Zhao, Y.; Lam, P. M.; Mechanical, Y. Y. Thermal Properties of Chicken Feather Fiber/PLA Green Composites. Compos. Part B-Eng. 2009, 40, 650–654. DOI: 10.1016/j.compositesb.2009.04.011.
  • Bai, H.; Xiu, H.; Gao, J.; Deng, H.; Zhang, Q.; Yang, M.; Fu, Q. Tailoring Impact Toughness of Poly (L-lactide)/poly (ε-Caprolactone)(PLLA/PCL) Blends by Controlling Crystallization of PLLA Matrix. ACS Appl. Mater. Interfaces. 2012, 4, 897–905. DOI: 10.1021/am201564f.
  • Aslzadeh, M. M.; Abdouss, M.; Sadeghi, G. M. Preparation and Characterization of New Flame Retardant Polyurethane Composite and Nanocomposite. J. Appl. Polym. Sci. 2013, 127, 1683–1690. DOI: 10.1002/app.37809.
  • Jang, B. N.; Wilkie, C. A. The Effect of Clay on the Thermal Degradation of Polyamide 6 in Polyamide 6/C Clay Nanocomposites. Polymer. 2005, 46, 3264–3274. DOI: 10.1016/j.polymer.2005.02.078.
  • Song, P.; Chen, G.; Wei, Z.; Chang, Y.; Zhang, W.; Liang, J. Rapid Crystallization of Poly (L-lactic Acid) Induced by a Nanoscaled Zinc Citrate Complex as Nucleating Agent. Polymer. 2012, 53, 4300–4309. DOI: 10.1016/j.polymer.2012.07.032.
  • Banerjee, S.; Joshi, M.; Ghosh, A. K. Investigations on Clay Dispersion in Polypropylene/Clay Nanocomposites Using Rheological and Microscopic Analysis. J. Appl. Polym. Sci. 2013, 130, 4464–4473.
  • Mewis, J.; Biebaut, G. Shear Thickening in Steady and Superposition Flows Effect of Particle Interaction Forces. J. Rheol. 2001, 45, 799–813. DOI: 10.1122/1.1359761.
  • Lertwimolnun, W.; Vergnes, B. Influence of Compatibilizer and Processing Conditions on the Dispersion of Nanoclay in a Polypropylene Matrix. Polymer. 2005, 46, 3462–3471. DOI: 10.1016/j.polymer.2005.02.018.
  • Tang, G.; Zhang, R.; Wang, X.; Wang, B.; Song, L.; Hu, Y.; Gong, X. Enhancement of Flame Retardant Performance of Bio-based Polylactic Acid Composites with the Incorporation of Aluminum Hypophosphite and Expanded Graphite. J. Macromol. Sci. A. 2013, 50, 255–269. DOI: 10.1080/10601325.2013.742835.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.