443
Views
10
CrossRef citations to date
0
Altmetric
Articles

Effects of physical aging on thermomechanical behaviors of poly(ethylene terephthalate)-glycol (PETG)

, , &
Pages 835-846 | Received 03 Oct 2019, Accepted 17 Nov 2019, Published online: 02 Dec 2019

References

  • Houston, K. R.; Jackson, A.-M. S.; Yost, R. W.; Carman, H. S.; Ashby, V. S. Supramolecular Engineering Polyesters: Endgroup Functionalization of Glycol Modified PET with Ureidopyrimidinone. Polym. Chem. 2016, 7, 6744–6751. DOI: 10.1039/C6PY01421F.
  • Ma, Y. S.; Fang, D. Y.; Zhang, N.; Ding, X. J.; Zhang, K. Y.; Bai, Y. X. Mechanical Properties of Orthodontic Thermoplastics PETG/ PC2858 after Blending. Chin. J. Dental Res. 2016, 19, 43–48. DOI: 10.3290/j.cjdr.a35696.
  • Fujiwara, K.; Fukuhara, T.; Niimi, K.; Sato, T.; Kataoka, H.; Kitano, H.; Takeuchi, H. Mechanical Evaluation of Newly Developed Mouthpiece Using Polyethylene Terephthalate Glycol for Transoral Robotic Surgery. J. Rob. Surg. 2015, 9, 347–354. DOI: 10.1007/s11701-015-0539-7.
  • Skaik, A.; Wei, X. L.; Abusamak, I.; Iddi, I. Effects of Time and Clear Aligner Removal Frequency on the Force Delivered by Different Polyethylene Terephthalate Glycol-modified Materials Determined with Thin-film Pressure Sensors. Am. J. Orthodontics Dentofacial Orthopedics. 2019, 155, 98–107. DOI: 10.1016/j.ajodo.2018.03.017.
  • Pan, Y.; Zhao, H. Preparation of Layer-by-Layer Self-Assembled Coating Modified Polyethylene Terephthalate Fabric with Flame Retardancy and UV Protection Based on ZnO Nanopaticles. Polym. Plast. Technol. Eng. 2019, 58, 1046–1053. DOI: 10.1080/03602559.2018.1493123.
  • Jabarin, S. A.;. Strain-induced Crystallization of Poly(ethylene Terephthalate). Polym. Eng. Sci. 1992, 32, 1341–1349. DOI: 10.1002/(ISSN)1548-2634.
  • Lu, X.; Hay, J. Crystallization Orientation and Relaxation in Uniaxially Drawn Poly(ethylene Terephthalate). Polymer. 2001, 42, 8055–8067. DOI: 10.1016/S0032-3861(01)00295-6.
  • Keum, J. K.; Kim, J.; Lee, S. M.; Song, H. H.; Son, Y.-K.; Choi, J.-I.; Im, S. S. Crystallization and Transient Mesophase Structure in Cold-Drawn PET Fibers. Macromolecules. 2003, 36, 9873–9878. DOI: 10.1021/ma034694i.
  • Ma, J.; Yu, L.; Chen, S.; Chen, W.; Wang, Y.; Guang, S.; Zhang, X.; Lu, W.; Wang, Y.; Bao, J. Structure–Property Evolution of Poly(ethylene Terephthalate) Fibers in Industrialized Process under Complex Coupling of Stress and Temperature Field. Macromolecules. 2018, 52, 565–574. DOI: 10.1021/acs.macromol.8b01561.
  • Donnay, M.; Ponc¸ot, M.; Tinnes, J.-P.; Schenk, T.; Ferry, O.; Royaud, I. In Situ Study of the Tensile Deformation Micro-mechanisms of Semi-crystalline Poly(ethylene Terephthalate) Films Using Synchrotron Radiation X-ray Scattering. Polymer. 2017, 117, 268–281. DOI: 10.1016/j.polymer.2017.04.043.
  • Zhang, Q.; Zhang, R.; Meng, L.; Lin, Y.; Chen, X.; Li, X.; Zhang, W.; Li, L. Biaxial Stretch-induced Crystallization of Poly(ethylene Terephthalate) above Glass Transition Temperature: The Necessary of Chain Mobility. Polymer. 2016, 101, 15–23. DOI: 10.1016/j.polymer.2016.08.054.
  • Gohil, R. M.;. Properties and Strain Hardening Character of Polyethylene Terephthalate Containing Isosorbide. Polym. Eng. Sci. 2009, 49, 544–553. DOI: 10.1002/pen.v49:3.
  • Buckley, C.; Lew, C. Biaxial Hot-drawing of Poly(ethylene Terephthalate): An Experimental Study Spanning the Processing Range. Polymer. 2011, 52, 1803–1810. DOI: 10.1016/j.polymer.2011.02.039.
  • Zhang, W.; Yan, Q.; Ye, K.; Zhang, Q.; Chen, W.; Meng, L.; Chen, X.; Wang, D.; Li, L. The Effect of Water Absorption on Stretch-induced Crystallization of Poly(ethylene Terephthalate): An In-situ Synchrotron Radiation Wide Angle X-ray Scattering Study. Polymer. 2019, 162, 91–99. DOI: 10.1016/j.polymer.2018.12.029.
  • Dupaix, R. B.; Boyce, M. C. Finite Strain Behavior of Poly(ethylene Terephthalate) (PET) and poly(ethylene Terephthalate)-glycol (PETG). Polymer. 2005, 46, 4827–4838. DOI: 10.1016/j.polymer.2005.03.083.
  • Zhang, R.; Bai, P.; Lei, D.; Xiao, R. Aging-dependent Strain Localization in Amorphous Glassy Polymers: From Necking to Shear Banding. Int. J. Solids Struct. 2018, 146, 203–213. DOI: 10.1016/j.ijsolstr.2018.03.030.
  • Guo, J.; Xiao, R.; Tian, C.; Jiang, M. Optimizing Physical Aging in Poly(ethylene Terephthalate)-glycol (PETG). J. Non-Cryst. Solids. 2018, 502, 15–21. DOI: 10.1016/j.jnoncrysol.2018.10.021.
  • Xiao, R.; Tian, C. A Constitutive Model for Strain Hardening Behavior of Predeformed Amorphous Polymers: Incorporating Dissipative Dynamics of Molecular Orientation. J. Mech. Phys. Solids. 2019, 125, 472–487. DOI: 10.1016/j.jmps.2019.01.008.
  • Kattan, M.; Dargent, E.; Ledru, J.; Grenet, J. Strain-induced Crystallization in Uniaxially Drawn PETG Plates. J. Appl. Polym. Sci. 2001, 81, 3405–3412. DOI: 10.1002/(ISSN)1097-4628.
  • Gordeev, E.; Degtyareva, E.; Ananikov, V. Analysis of 3D Printing Possibilities for the Development of Practical Applications in Synthetic Organic Chemistry. Russ. Chem. Bull. 2016, 65, 1637–1643. DOI: 10.1007/s11172-016-1492-y.
  • Mansour, M.; Tsongas, K.; Tzetzis, D.; Antoniadis, A. Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers. Polym.-Plast. Technol. Eng. 2018, 57, 1715–1725. DOI: 10.1080/03602559.2017.1419490.
  • Kattekola, B.; Desai, C.; Parameswaran, V.; Basu, S. Critical Evaluation of a Constitutive Model for Glassy Polycarbonate. Exp. Mech. 2014, 54, 357–368. DOI: 10.1007/s11340-013-9810-x.
  • Gao, Y.; Cheng, T.; Su, Y.; Xu, X.; Zhang, Y.; Zhang, Q. High-efficiency and High-accuracy Digital Image Correlation for Three-dimensional Measurement. Opt. Lasers Eng. 2015, 65, 73–80. DOI: 10.1016/j.optlaseng.2014.05.013.
  • Li, Z.; Liu, Z. An Algorithm for Obtaining Real Stress Field of Hyperelastic Materials Based on Digital Image Correlation System. Int. J. Comput. Mater. Sci. Eng. 2017, 6, 1850003. DOI: 10.1142/S2047684118500033.
  • Yan, T.; Su, Y.; Zhang, Q. Precise 3D Shape Measurement of Three-dimensional Digital Image Correlation for Complex Surfaces. Sci. China Technol. Sci. 2018, 61, 68–73. DOI: 10.1007/s11431-017-9125-7.
  • Jiang, H.-F.; Zhang, Q.-C.; Jiang, Z.-Y.; Chen, Z.-J.; Wu, X.-P. Investigation of Kinematics of the Portevin–Le Chatelier Deformation Bands with Dynamic Digital Speckle Pattern Interferometry. Chin. Phys. Lett. 2005, 22, 99–102. DOI: 10.1088/0256-307X/22/1/028.
  • Epee, A.; Lauro, F.; Bennani, B.; Bourel, B. Constitutive Model for a Semi-crystalline Polymer under Dynamic Loading. Int. J. Solids Struct. 2011, 48, 1590–1599. DOI: 10.1016/j.ijsolstr.2011.02.009.
  • Allaer, K.; De Baere, I.; Van Paepegem, W.; Degrieck, J. Direct Fracture Toughness Determination of a Ductile Epoxy Polymer from Digital Image Correlation Measurements on a Single Edge Notched Bending Sample. Polym. Test. 2015, 42, 199–207. DOI: 10.1016/j.polymertesting.2015.01.014.
  • Eshraghi, I.; Dehnavi, M. R. Y.; Soltani, N. Effect of Subset Parameters Selection on the Estimation of mode-I Stress Intensity Factor in a Cracked PMMA Specimen Using Digital Image Correlation. Polym. Test. 2014, 37, 193–200. DOI: 10.1016/j.polymertesting.2014.05.017.
  • Nunes, L.;. Load-displacement Behavior for Double-edge Cracked Plate of polytetrafluoroethylene. Polym. Test. 2015, 41, 33–39. DOI: 10.1016/j.polymertesting.2014.10.005.
  • Kashfuddoja, M.; Prasath, R.; Ramji, M. Study on Experimental Characterization of Carbon Fiber Reinforced Polymer Panel Using Digital Image Correlation: A Sensitivity Analysis. Opt. Lasers Eng. 2014, 62, 17–30. DOI: 10.1016/j.optlaseng.2014.04.019.
  • Tang, N.; Lei, D.; Huang, D.; Xiao, R. Mechanical Performance of Polystyrene Foam (EPS): Experimental and Numerical Analysis. Polym. Test. 2019, 73, 359–365. DOI: 10.1016/j.polymertesting.2018.12.001.
  • Delhaye, V.; Clausen, A.; Moussy, F.; Hopperstad, O.; Othman, R. Mechanical Response and Microstructure Investigation of a Mineral and Rubber Modified Polypropylene. Polym. Test. 2010, 29, 793–802. DOI: 10.1016/j.polymertesting.2010.07.001.
  • Xiao, R.; Nguyen, T. D. An Effective Temperature Theory for the Nonequilibrium Behavior of Amorphous Polymers. J. Mech. Phys. Solids. 2015, 82, 62–81. DOI: 10.1016/j.jmps.2015.05.021.
  • Xiao, R.; Ghazaryan, G.; Tervoort, T. A.; Nguyen, T. D. Modeling Energy Storage and Structural Evolution during Finite Viscoplastic Deformation of Glassy Polymers. Phys. Rev. E. 2017, 95, 063001. DOI: 10.1103/PhysRevE.95.063001.
  • Hasan, O.; Boyce, M. C. Energy Storage during Inelastic Deformation of Glassy Polymers. Polymer. 1993, 34, 5085–5092. DOI: 10.1016/0032-3861(93)90252-6.
  • Talamini, B.; Mao, Y.; Anand, L. Progressive Damage and Rupture in Polymers. J. Mech. Phys. Solids. 2018, 111, 434–457. DOI: 10.1016/j.jmps.2017.11.013.
  • Loew, P. J.; Peters, B.; Beex, L. A. Rate-dependent Phase-field Damage Modeling of Rubber and Its Experimental Parameter Identification. J. Mech. Phys. Solids. 2019, 127, 266–294. DOI: 10.1016/j.jmps.2019.03.022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.