885
Views
21
CrossRef citations to date
0
Altmetric
Reviews

Thermally conducting polymer/nanocarbon and polymer/inorganic nanoparticle nanocomposite: a review

Pages 895-909 | Received 01 Oct 2019, Accepted 05 Dec 2019, Published online: 03 Jan 2020

References

  • Singh, A. K.; Panda, B. P.; Mohanty, S.; Nayak, S. K.; Gupta, M. K. Recent Developments on Epoxy-Based Thermally Conductive Adhesives (TCA): A Review. Polym. -Plast. Technol. Eng. 2018, 57, 903–934.
  • Baştürk, E.; Kahraman, M. V. Thermal and Phase Change Material Properties of Comb-like Polyacrylic Acid-grafted-fatty Alcohols. Polym. -Plast. Technol. Eng. 2018, 57, 276–282. DOI: 10.1080/03602559.2017.1326134.
  • Burger, N.; Laachachi, A.; Ferriol, M.; Lutz, M.; Toniazzo, V.; Ruch, D. Review of Thermal Conductivity in Composites: Mechanisms, Parameters and Theory. Prog. Polym. Sci. 2016, 61, 1–28. DOI: 10.1016/j.progpolymsci.2016.05.001.
  • Kausar, A.;. Trends in Graphene Reinforced Polyamide Nanocomposite for Functional Application: A Review. Polym. -plast. Technol. Eng. 2019, 58, 917–933.
  • Vaithylingam, R.; Ansari, M. N. M.; Shanks, R. A. Recent Advances in Polyurethane-based Nanocomposites: A Review. Polym. -Plast. Technol. Eng. 2017, 56, 1528–1541. DOI: 10.1080/03602559.2017.1280683.
  • Chen, H.; Ginzburg, V. V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal Conductivity of Polymer-based Composites: Fundamentals and Applications. Prog. Polym. Sci. 2016, 59, 41–85. DOI: 10.1016/j.progpolymsci.2016.03.001.
  • Kausar, A.; Anwar, S. Graphite Filler-based Nanocomposites with Thermoplastic Polymers: A Review. Polym. -plast. Technol. Eng. 2018, 57, 565–580.
  • Sairajan, K. K.; Aglietti, G. S.; Mani, K. M. A Review of Multifunctional Structure Technology for Aerospace Applications. Acta Astronautica. 2016, 120, 30–42. DOI: 10.1016/j.actaastro.2015.11.024.
  • Tong, X. C.;. Advanced Materials for Thermal Management of Electronic Packaging; Springer: New York, 2011.
  • Moore, A. L.; Shi, L. Emerging Challenges and Materials for Thermal Management of Electronics. Mater. Today. 2014, 17, 163–174. DOI: 10.1016/j.mattod.2014.04.003.
  • Marchio, D.; Reboux, P. Introduction Aux Transferts Thermiques; Ecoles des Mines de Paris: Paris, 2008; pp 210.
  • Lee, J. H.; Lee, S. H.; Choi, C. J.; Jang, S. P.; Choi, S. U. S. A Review of Thermalconductivity Data, Mechanisms and Models for Nanofluids. Int. J. Micro-Nano Scale Transf. 2010, 1, 269–322. DOI: 10.1260/1759-3093.1.4.269.
  • Pang, C.; Lee, J. W.; Kang, Y. T. Review on Combined Heat and Mass Transfer Characteristics in Nanofluids. Int. J. Therm. Sci. 2015, 87, 49–67. DOI: 10.1016/j.ijthermalsci.2014.07.017.
  • Han, Z. D.; Fina, A. Thermal Conductivity of Carbon Nanotubesand Their Polymer Nanocomposites: A Review. Prog. Polym. Sci. 2011, 36, 914–944. DOI: 10.1016/j.progpolymsci.2010.11.004.
  • Huang, X. Y.; Jiang, P. K.; Tanaka, T. A Review of Dielectric Polymercomposites with High Thermal Conductivity. IEEE Electr. Insul. Mag. 2011, 27, 8–16. DOI: 10.1109/MEI.2011.5954064.
  • Elimelech, M.; Gregory, J.; Jia, X. Particle Deposition and Aggregation: Measurement, Modelling and Simulation; Oxford, UK: Butterworth-Heinemann, 2013.
  • Genovese, D. B.;. Shear Rheology of Hard-sphere, Dispersed, and Aggregated Suspensions, and Filler-matrix Composites. Adv. Coll. Interfac. Sci. 2012, 171, 1–16.
  • Ahmadi, M.; Ansari, R.; Hassanzadeh-Aghdam, M. K. Finite Element Analysis of Thermal Conductivities of Unidirectional Multiphase Composites. Compos. Interface. 2019, 26, 1035–1055. DOI: 10.1080/09276440.2019.1578588.
  • Hassanzadeh-Aghdam, M. K.; Ansari, R. Evaluating Unidirectional Composite Thermal Conductivities through Engineered Interphase. Plast. Rubb. Compos. 2019, 48, 317–326. DOI: 10.1080/14658011.2019.1622275.
  • Hassanzadeh-Aghdam, M. K.; Mahmoodi, M. J. Micromechanical Modeling of Thermal Conducting Behavior of General Carbon Nanotube-polymer Nanocomposites. Mater. Sci. Eng.: B. 2018, 229, 173–183. DOI: 10.1016/j.mseb.2017.12.039.
  • Yang, Y.;. Thermal Conductivity. In Physical Properties of Polymers Handbook; Mark, J. E., Ed.; Springer-Verlag: New York, 2007; pp 155–163.
  • Khoukhi, M.; Abdelbaqi, S.; Hassan, A. Yearly Energy Performance Assessment of Employing Expanded Polystyrene with Variable Temperature and Moisture–Thermal Conductivity Relationship. Materials. 2019, 12, 3000. DOI: 10.3390/ma12183000.
  • Ding, P.; Su, S.; Song, N.; Tang, S.; Liu, Y.; Shi, L. Highly Thermal Conductive Composites with Polyamide-6 Covalently-grafted Graphene by an in Situ Polymerization and Thermal Reduction Process. Carbon. 2014, 66, 576–584. DOI: 10.1016/j.carbon.2013.09.041.
  • Henry, A.; Chen, G. High Thermal Conductivity of Single Polyethylene Chains Using Molecular Dynamics Simulations. Phys. Rev. Lett. 2008, 101, 235502/1–235502. DOI: 10.1103/PhysRevLett.101.235502.
  • Hassanzadeh-Aghdam, M. K.; Mahmoodi, M. J.; Jamali, J. Effect of CNT Coating on the Overall Thermal Conductivity of Unidirectional Polymer Hybrid Nanocomposites. Int. J. Heat Mass Trans. 2018, 124, 190–200. DOI: 10.1016/j.ijheatmasstransfer.2018.03.065.
  • Mahmoodi, M. J.; Hassanzadeh-Aghdam, M. K.; Ansari, R. Overall Thermal Conductivity of Unidirectional Hybrid Polymer Nanocomposites Containing SiO2 Nanoparticles. Int. J. Mechan. Mater. Des. 2019, 15, 539–554. DOI: 10.1007/s10999-018-9428-3.
  • Hassanzadeh-Aghdam, M. K.; Ansari, R. Thermal Conductivity of Shape Memory Polymer Nanocomposites Containing Carbon Nanotubes: A Micromechanical Approach. Compos. B Eng. 2019, 162, 167–177. DOI: 10.1016/j.compositesb.2018.11.003.
  • Shahil, K. M. F.; Balandin, A. A. Graphene-multilayer Graphenenanocomposites as Highly Efficient Thermal Interface Materials. Nano Lett. 2012, 12, 861–867. DOI: 10.1021/nl203906r.
  • Hassanzadeh-Aghdam, M. K.; Ansari, R.; Mahmoodi, M. J.; Darvizeh, A.; Hajati-Modaraei, A. A Comprehensive Study on Thermal Conductivities of Wavy Carbon Nanotube-reinforced Cementitious Nanocomposites. Cem. Concr. Compos. 2018, 90, 108–118. DOI: 10.1016/j.cemconcomp.2017.09.021.
  • Pizza, A.; Metz, R.; Hassanzadeh, M.; Bantignies, J. L. Life Cycle Assess-ment of Nanocomposites Made of Thermally Conductive Graphitenanoplatelets. Int. J. Life Cycle Assess. 2014, 19, 1226–1237. DOI: 10.1007/s11367-014-0733-2.
  • Anish, M.; Jayaprabakar, J.; Joy, N.; Jayaprakash, V.; Prabhu, A.; Arunkumar, T. Experimental Analysis and Theoretical Certainity of Thermal Conductivity of CuO Based Therminol D-12 Nano Fluid. Int. J. Amb. Energy. 2019, 1–11.
  • Khan, K. A.; Hajeri, F. A.; Khan, M. A. Analytical and Numerical Assessment of the Effect of Highly Conductive Inclusions Distribution on the Thermal Conductivity of Particulate Composites. J. Compos. Mater. 2019, 53, 3499–3514.
  • Khan, K. A.; Barello, R.; Muliana, A. H.; Lévesque, M. Coupled Heat Conduction and Thermal Stress Analyses in Particulate Composites. Mech. Mater. 2011, 43, 608–625. DOI: 10.1016/j.mechmat.2011.06.013.
  • Kim, S. Y.; Noh, Y. J.; Yu, J. Thermal Conductivity of Graphene Nanoplatelets Filled Composites Fabricated by Solvent-free Processing for the Excellent Filler Dispersion and a Theoretical Approach for the Composites Containing the Geometrized Fillers. Compos. A Appl. Sci. Manufact. 2015, 69, 219–225. DOI: 10.1016/j.compositesa.2014.11.018.
  • Yu, J.; Choi, H. K.; Kim, H. S.; Kim, S. Y. Synergistic Effect of Hybrid Graphene Nanoplatelet and Multi-walled Carbon Nanotube Fillers on the Thermal Conductivity of Polymer Composites and Theoretical Modeling of the Synergistic Effect. Compos. A Appl. Sci. Manufact. 2016, 88, 79–85. DOI: 10.1016/j.compositesa.2016.05.022.
  • Tjong, S. C.;. Recent Progress in the Development and Properties of Novel Metal Matrix Nanocomposites Reinforced with Carbon Nanotubes and Graphene Nanosheets. Mater. Sci. Eng. R: Rep. 2013, 74, 281–350. DOI: 10.1016/j.mser.2013.08.001.
  • Liu, Y.; Kumar, S. Polymer/carbon Nanotube Nano Composite Fibers–A Review. ACS Appl. Mater. Interfaces. 2014, 6, 6069–6087. DOI: 10.1021/am405136s.
  • Clancy, T. C.; Frankland, S. J. V.; Hinkley, J. A.; Gates, T. S. Multiscale Modeling of Thermal Conductivity of Polymer/carbon Nanocomposites. Int. J. Therm. Sci. 2010, 49, 1555–1560. DOI: 10.1016/j.ijthermalsci.2010.05.007.
  • Marconnet, A. M.; Yamamoto, N.; Panzer, M. A.; Wardle, B. L.; Goodson, K. E. Thermal Conduction in Aligned Carbon Nanotube–Polymer Nanocomposites with High Packing Density. ACS Nano. 2011, 5, 4818–4825. DOI: 10.1021/nn200847u.
  • Im, H.; Kim, J. Thermal Conductivity of a Graphene Oxide–Carbon Nanotube Hybrid/epoxy Composite. Carbon. 2012, 50, 5429–5440. DOI: 10.1016/j.carbon.2012.07.029.
  • Cui, W.; Du, F.; Zhao, J.; Zhang, W.; Yang, Y.; Xie, X.; Mai, Y. W. Improving Thermal Conductivity while Retaining High Electrical Resistivity of Epoxy Composites by Incorporating Silica-coated Multi-walled Carbon Nanotubes. Carbon. 2011, 49, 495–500. DOI: 10.1016/j.carbon.2010.09.047.
  • Pak, S. Y.; Kim, H. M.; Kim, S. Y.; Youn, J. R. Synergistic Improvement of Thermal Conductivity of Thermoplastic Composites with Mixed Boron Nitride and Multi-walled Carbon Nanotube Fillers. Carbon. 2012, 50, 4830–4838. DOI: 10.1016/j.carbon.2012.06.009.
  • Bozlar, M.; He, D.; Bai, J.; Chalopin, Y.; Mingo, N.; Volz, S. Carbon Nanotube Microarchitectures for Enhanced Thermal Conduction at Ultralow Mass Fraction in Polymer Composites. Adv. Mater. 2010, 22, 1654–1658.
  • Zhao, J. C.; Du, F. P.; Zhou, X. P.; Cui, W.; Wang, X. M.; Zhu, H.; Xie, X. L.; Mai, Y. W. Thermal Conductive and Electrical Properties of Polyurethane/hyperbranched Poly(urea-urethane)-grafted Multi-walled Carbon Nanotube Composites. Compos. B Eng. 2011, 42, 2111–2116. DOI: 10.1016/j.compositesb.2011.05.005.
  • Peters, J. E.; Papavassiliou, D. V.; Grady, B. P. Unique Thermal Conductivity Behavior of Single-walled Carbon Nanotube-polystyrene Composites. Macromolecules. 2008, 41, 7274–7277. DOI: 10.1021/ma8011569.
  • Tan, C.; Cao, X.; Wu, X. J.; He, Q.; Yang, J.; Zhang, X.; Chen, J.; Zhao, W.; Han, S.; Nam, G. H.; et al. Recent Advances in Ultrathin Two-dimensional Nanomaterials. Chem. Rev. 2017, 117, 6225–6331. DOI: 10.1021/acs.chemrev.6b00558.
  • Wang, X.; Sun, G.; Routh, P.; Kim, D. H.; Huang, W.; Chen, P. Heteroatom-doped Graphene Materials: Syntheses, Properties and Applications. Chem. Soc. Rev. 2014, 43, 7067–7098. DOI: 10.1039/C4CS00141A.
  • Fang, M.; Wang, K.; Lu, H.; Yang, Y.; Nutt, S. Single-layer Graphene Nanosheets with Controlled Grafting of Polymer Chains. J. Mater. Chem. 2010, 20, 1982–1992.
  • Fang, M.; Zhang, Z.; Li, J.; Zhang, H.; Lu, H.; Yang, Y. Constructing Hierarchically Structured Interphases for Strong and Tough Epoxy Nanocomposites by Amine-rich Graphene Surfaces. J. Mater. Chem. 2010, 20, 9635–9643. DOI: 10.1039/c0jm01620a.
  • Teng, C. C.; Ma, C. C. M.; Lu, C. H.; Yang, S. Y.; Lee, S. H.; Hsiao, M. C.; Yen, M. Y.; Chiou, K. C.; Lee, T. M. Thermal Conductivity and Structure of Non-covalent Functionalized Graphene/epoxy Composites. Carbon. 2011, 49, 5107–5116. DOI: 10.1016/j.carbon.2011.06.095.
  • Araby, S.; Meng, Q.; Zhang, L.; Kang, H.; Majewski, P.; Tang, Y.; Ma, J. Electrically and Thermally Conductive Elastomer/graphene Nanocomposites by Solution Mixing. Polymer. 2014, 55, 201–210. DOI: 10.1016/j.polymer.2013.11.032.
  • Araby, S.; Zhang, L.; Kuan, H. C.; Dai, J. B.; Majewski, P.; Ma, J. A Novel Approach to Electrically and Thermally Conductive Elastomers Using Graphene. Polymer. 2013, 54, 3663–3670. DOI: 10.1016/j.polymer.2013.05.014.
  • Kumar, P.; Yu, S.; Shahzad, F.; Hong, S. M.; Kim, Y. H.; Koo, C. M. Ultrahigh Electrically and Thermally Conductive Self-aligned Graphene/polymer Composites Using Large-area Reduced Graphene Oxides. Carbon. 2016, 101, 120–128. DOI: 10.1016/j.carbon.2016.01.088.
  • Hu, K.; Kulkarni, D. D.; Choi, I.; Tsukruk, V. V. Graphene-polymer Nanocomposites for Structural and Functional Applications. Prog. Polym. Sci. 2014, 39, 1934–1972. DOI: 10.1016/j.progpolymsci.2014.03.001.
  • Mochalin, V. N.; Neitzel, I.; Etzold, B. J.; Peterson, A.; Palmese, G.; Gogotsi, Y. Covalent Incorporation of Aminated Nanodiamond into an Epoxy Polymer Network. ACS Nano. 2011, 5, 7494–7502. DOI: 10.1021/nn2024539.
  • Maitra, U.; Prasad, K. E.; Ramamurty, U.; Rao, C. N. R. Mechanical Properties of Nanodiamond-reinforced Polymer-matrix Composites. Solid State Commun. 2009, 149, 1693–1697. DOI: 10.1016/j.ssc.2009.06.017.
  • Zhang, Y.; Rhee, K. Y.; Park, S. Nanodiamond Nanocluster-decorated Graphene Oxide/epoxy Nanocomposites with Enhanced Mechanical Behavior and Thermal Stability. Compos. B Eng. 2017, 114, 111–120. DOI: 10.1016/j.compositesb.2017.01.051.
  • Neitzel, I.; Mochalin, V.; Knoke, I.; Palmese, G. R.; Gogotsi, Y. Mechanical Properties of Epoxy Composites with High Contents of Nanodiamond. Compos. Sci. Technol. 2011, 71, 710–716. DOI: 10.1016/j.compscitech.2011.01.016.
  • Zhang, Y.; Choi, J. R.; Park, S. J. Thermal Conductivity and Thermo-physical Properties of Nanodiamond-attached Exfoliated Hexagonal Boron Nitride/epoxy Nanocomposites for Microelectronics. Compos. A Appl. Sci. Manufact. 2017, 101, 227–236. DOI: 10.1016/j.compositesa.2017.06.019.
  • Şen, F.; Kahraman, M. V. Thermal Conductivity and Properties of Cyanate Ester/nanodiamond Composites. Polym. Adv. Technol. 2014, 25, 1020–1026. DOI: 10.1002/pat.v25.9.
  • Yu, J.; Qian, R.; Jiang, P. Enhanced Thermal Conductivity for PVDF Composites with a Hybrid Functionalized Graphene Sheet-nanodiamond Filler. Fiber. Polym. 2013, 14, 1317–1323. DOI: 10.1007/s12221-013-1317-7.
  • Zhao, Y. Q.; Lau, K. T.; Kim, J. K.; Xu, C. L.; Zhao, D. D.; Li, H. L. Nanodiamond/poly (Lactic Acid) Nanocomposites: Effect of Nanodiamond on Structure and Properties of Poly(lactic Acid). Compos. B Eng. 2010, 41, 646–653. DOI: 10.1016/j.compositesb.2010.09.003.
  • Tamburri, E.; Guglielmotti, V.; Orlanducci, S.; Terranova, M. L.; Sordi, D.; Passeri, D.; Matassa, R.; Rossi, M. Nanodiamond-mediated Crystallization in Fibers of PANI Nanocomposites Produced by Template-free Polymerization: Conductive and Thermal Properties of the Fibrillar Networks. Polymer. 2012, 53, 4045–4053. DOI: 10.1016/j.polymer.2012.07.014.
  • Song, N.; Cui, S.; Hou, X.; Ding, P.; Shi, L. Significant Enhancement of Thermal Conductivity in Nanofibrillated Cellulose Films with Low Mass Fraction of Nanodiamond. ACS Appl. Mater. Interfaces. 2017, 9, 40766–40773. DOI: 10.1021/acsami.7b09240.
  • Jee, A. Y.; Lee, M. Thermal and Mechanical Properties of Alkyl-functionalized Nanodiamond Composites. Curr. Appl. Phys. 2011, 11, 1183–1187. DOI: 10.1016/j.cap.2011.02.016.
  • Mochalin, V. N.; Gogotsi, Y. Nanodiamond–Polymer Composites. Diam. Relat. Mater. 2015, 58, 161–171. DOI: 10.1016/j.diamond.2015.07.003.
  • Roumeli, E.; Pavlidou, E.; Avgeropoulos, A.; Vourlias, G.; Bikiaris, D. N.; Chrissafis, K. Factors Controlling the Enhanced Mechanical and Thermal Properties of Nanodiamond-reinforced Cross-linked High Density Polyethylene. J. Phys. Chem. B. 2014, 118, 11341–11352. DOI: 10.1021/jp504531f.
  • Hashemi, M.; Shojaei, A. Morphology Development and Mechanical Properties of Unsaturated Polyester Resin Containing Nanodiamonds. Polym. Int. 2017, 66, 950–959. DOI: 10.1002/pi.2017.66.issue-6.
  • Zhang, Y.; Rhee, K. Y.; Hui, D.; Park, S. J. A Critical Review of Nanodiamond Based Nanocomposites: Synthesis, Properties and Applications. Compos. B Eng. 2018, 143, 19–27. DOI: 10.1016/j.compositesb.2018.01.028.
  • Choi, S.; Kim, J. Thermal Conductivity of Epoxy Composites with a Binary-particle System of Aluminum Oxide and Aluminum Nitride Fillers. Compos. B Eng. 2013, 51, 140–147. DOI: 10.1016/j.compositesb.2013.03.002.
  • Hong, J. P.; Yoon, S. W.; Hwang, T.; Oh, J. S.; Hong, S. C.; Lee, Y.; Nam, J. D. High Thermal Conductivity Epoxy Composites with Bimodal Distribution of Aluminum Nitride and Boron Nitride Fillers. Thermochim. Acta. 2012, 537, 70–75. DOI: 10.1016/j.tca.2012.03.002.
  • Kim, K.; Ju, H.; Kim, J. Vertical Particle Alignment of Boron Nitride and Silicon Carbide Binary Filler System for Thermal Conductivity Enhancement. Compos. Sci. Technol. 2016, 123, 99–105. DOI: 10.1016/j.compscitech.2015.12.004.
  • Zhang, X. J.; Lin, Z. D.; Li, B.; Tan, S. Z. Improved Thermal Conductivity of Compostie Particles Filled Epoxy Resin. Adv. Mater. Res. Trans. Tech. Publ. 2011, 217, 439–444.
  • Ramdani, N.; Wang, J.; Wang, H.; Feng, T. T.; Derradji, M.; Liu, W. B. Mechanical and Thermal Properties of Silicon Nitride Reinforced Polybenzoxazine Nanocomposites. Compos. Sci. Technol. 2014, 105, 73–79. DOI: 10.1016/j.compscitech.2014.10.006.
  • Hou, X.; Chen, Y.; Lv, L.; Dai, W.; Zhao, S.; Wang, Z.; Fu, L.; Lin, C. T.; Jiang, N.; Yu, J. High-Thermal-Transport-Channel Construction within Flexible Composites via the Welding of Boron Nitride Nanosheets. ACS Appl. Nano Mater. 2019, 2, 360–368. DOI: 10.1021/acsanm.8b01939.
  • Wang, Z. G.; Huang, Y. F.; Zhang, G. Q.; Wang, H. Q.; Xu, J. Z.; Lei, J.; Zhu, L.; Gong, F.; Li, Z. M. Enhanced Thermal Conductivity of Segregated Poly(vinylidene Fluoride) Composites via Forming Hybrid Conductive Network of Boron Nitride and Carbon Nanotubes. Indus. Engineer. Chem. Res. 2018, 57, 10391–10397. DOI: 10.1021/acs.iecr.8b01764.
  • Song, W. L.; Wang, P.; Cao, L.; Anderson, A.; Meziani, M. J.; Farr, A. J.; Sun, Y. P. Polymer/boron Nitride Nanocomposite Materials for Superior Thermal Transport Performance. Angewan. Chem. Int. Ed. 2012, 51, 6498–6501. DOI: 10.1002/anie.201201689.
  • Rosely, C. S.; Shaiju, P.; Gowd, E. B. Poly(L-lactic acid)/Boron Nitride Nanocomposites: Influence of Boron Nitride Functionalization on the Properties of Poly(L-lactic Acid). J. Phys. Chem. B. 2019. DOI: 10.1021/acs.jpcb.9b07743.
  • Li, Y.; Zhang, H.; Yang, X.; He, G.; Yang, Z.; Li, J. The Combustion Synthesis of Highly Crystalline Boron Nitride Nanosheets and Their Application in Thermoconductive Polymeric Composites. Cryst. Eng. Commun. 2019, 21, 5461–5469.
  • Yao, Y.; Zhu, X.; Zeng, X.; Sun, R.; Xu, J. B.; Wong, C. P. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites. ACS Appl. Mater. Interfaces. 2018, 10, 9669–9678. DOI: 10.1021/acsami.8b00328.
  • Cao, J. P.; Zhao, X.; Zhao, J.; Zha, J. W.; Hu, G. H.; Dang, Z. M. Improved Thermal Conductivity and Flame Retardancy in Polystyrene/poly(vinylidene Fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC Nanoparticles. ACS Appl. Mater. Interfaces. 2013, 5, 6915–6924. DOI: 10.1021/am401703m.
  • Remanan, S.; Sharma, M.; Jayashree, P.; Parameswaranpillai, J.; Fabian, T.; Shih, J.; Shankarappa, P.; Nuggehalli, B.; Bose, S. Unique Synergism in Flame Retardancy in ABS Based Composites through Blending PVDF and Halloysite Nanotubes. Mater. Res. Exp. 2017, 4, 065301. DOI: 10.1088/2053-1591/aa7617.
  • Ouyang, Y.; Hou, G.; Bai, L.; Li, B.; Yuan, F. Constructing Continuous Networks by Branched Alumina for Enhanced Thermal Conductivity of Polymer Composites. Compos. Sci. Technol. 2018, 165, 307–313. DOI: 10.1016/j.compscitech.2018.07.019.
  • Zhang, S.; Ke, Y.; Cao, X.; Ma, Y.; Wang, F. Effect of Al2O3 Fibers on the Thermal Conductivity and Mechanical Properties of High Density Polyethylene with the Absence and Presence of Compatibilizer. J. Appl. Polym. Sci. 2012, 124, 4874–4881.
  • Elahi, F.; Ma, L.; Hossain, Z. M. Heterogeneity Governs Diameter-dependent Toughness and Strength in SiC Nanowires. Phys.l Rev. B. 2018, 98, 174111. DOI: 10.1103/PhysRevB.98.174111.
  • Balachander, N.; Seshadri, I.; Mehta, R. J.; Schadler, L. S.; Borca-Tasciuc, T.; Keblinski, P.; Ramanath, G. Nanowire-filled Polymer Composites with Ultrahigh Thermal Conductivity. Appl. Phys. Lett. 2013, 102, 093117. DOI: 10.1063/1.4793419.
  • Li, M.; Tang, C.; Zhang, L.; Shang, B.; Zheng, S.; Qi, S. A Thermally Conductive and Insulating Epoxy Polymer Composite with Hybrid Filler of Modified Copper Nanowires and Graphene Oxide. J. Mater. Sci.: Mater. Electron. 2018, 29, 4948–4954.
  • Shen, Z.; Feng, J. Highly Thermally Conductive Composite Films Based on Nanofibrillated Cellulose in Situ Coated with a Small Amount of Silver Nanoparticles. ACS Appl. Mater. Interface. 2018, 10, 24193–24200. DOI: 10.1021/acsami.8b07249.
  • Zhou, W.; Gong, Y.; Tu, L.; Xu, L.; Zhao, W.; Cai, J.; Zhang, Y.; Zhou, A. Dielectric Properties and Thermal Conductivity of Core-shell Structured Ni@NiO/poly(vinylidene Fluoride) Composites. J. Alloys Comp. 2017, 693, 1–8. DOI: 10.1016/j.jallcom.2016.09.178.
  • Li, A.; Zhang, C.; Zhang, Y. F. Thermal Conductivity of Graphene-polymer Composites: Mechanisms, Properties, and Applications. Polymers. 2017, 9, 437.
  • Xu, P.; Loomis, J.; Bradshaw, R. D.; Panchapakesan, B. Load Transfer and Mechanical Properties of Chemically Reduced Graphene Reinforcements in Polymer Composites. Nanotechnology. 2012, 23, 3847–3856. DOI: 10.1088/0957-4484/23/50/505713.
  • Liu, Y.; Huang, J.; Yang, B.; Sumpter, B. G.; Qiao, R. Duality of the Interfacial Thermal Conductance in Graphene-based Nanocomposites. Carbon. 2014, 75, 169–177. DOI: 10.1016/j.carbon.2014.03.050.
  • Song, S. H.; Park, K. H.; Kim, B. H.; Choi, Y. W.; Jun, G. H.; Lee, D. J.; Kong, B. S.; Paik, K. W.; Jeon, S. Enhanced Thermal Conductivity of Epoxy-graphene Composites by Using Non-oxidized Graphene Flakes with Non-covalent Functionalization. Adv. Mater. 2013, 25, 732–737. DOI: 10.1002/adma.201202736.
  • Mehra, N.; Mu, L.; Zhu, J. Developing Heat Conduction Pathways through Short Polymer Chains in a Hydrogen Bonded Polymer System. Compos. Sci. Technol. 2017, 148, 97–105. DOI: 10.1016/j.compscitech.2017.05.017.
  • Lizundia, E.; Oleaga, A.; Salazar, A.; Sarasua, J. R. Nano-and Microstructural Effects on Thermal Properties of Poly (L-lactide)/multi-wall Carbon Nanotube Composites. Polymer. 2012, 53, 2412–2421. DOI: 10.1016/j.polymer.2012.03.046.
  • Dai, W.; Yu, J.; Wang, Y.; Song, Y.; Alam, F. E.; Nishimura, K.; Lin, C. T.; Jiang, N. Enhanced Thermal Conductivity for Polyimide Composites with a Three-dimensional Silicon Carbide Nanowire@ Graphene Sheets Filler. J. Mater. Chem. A. 2015, 3, 4884–4891. DOI: 10.1039/C4TA06417H.
  • Kemaloglu, S.; Ozkoc, G.; Aytac, A. Properties of Thermally Conductive Micro and Nano Size Boron Nitride Reinforced Silicon Rubber Composites. Thermochim. Acta. 2010, 499, 40–47. DOI: 10.1016/j.tca.2009.10.020.
  • Teng, C. C.; Ma, C. C. M.; Chiou, K. C.; Lee, T. M.; Shih, Y. F. Synergetic Effect of Hybrid Boron Nitride and Multi-walled Carbon Nanotubes on the Thermal Conductivity of Epoxy Composites. Mater. Chem. Phys. 2011, 126, 722–728. DOI: 10.1016/j.matchemphys.2010.12.053.
  • Droval, G.; Feller, J. F.; Salagnac, P.; Glouannec, P. Conductive Poly-mer Composites with Double Percolated Architecture of Carbonnanoparticles and Ceramic Microparticles for High Heat Dissi-pation and Sharp PTC Switching. Smart Mater. Struct. 2008, 17, 025011/1-25011. DOI: 10.1088/0964-1726/17/2/025011.
  • Yorifuji, D.; Ando, S. Enhanced Thermal Conductivity over Percolationthreshold in Polyimide Blend Films Containing ZnO Nano-pyramidalparticles: Advantage of Vertical Double Percolation Structure. J. Mater. Chem. 2011, 21, 4402–4407. DOI: 10.1039/c0jm04243a.
  • Chow, T. T.;. A Review on Photovoltaic/thermal Hybrid Solar Technology. Appl. Energy. 2010, 87, 365–379. DOI: 10.1016/j.apenergy.2009.06.037.
  • Lee, B.; Liu, J. Z.; Sun, B.; Shen, C. Y.; Dai, G. C. Thermally Conductive and Electrically Insulating EVA Composite Encapsulants for Solar Photovoltaic (PV) Cell. eXPRESS Polym. Lett. 2008, 2, 357–363. DOI: 10.3144/expresspolymlett.2008.42.
  • Guo, Z.; Lee, D.; Liu, Y.; Sun, F.; Sliwinski, A.; Gao, H.; Burns, P. C.; Huang, L.; Luo, T. Tuning the Thermal Conductivity of Solar Cell Polymers through Side Chain Engineering. Phys. Chem. Chem. Phys. 2014, 16, 7764–7771. DOI: 10.1039/C4CP00393D.
  • Wang, J. T. W.; Ball, J. M.; Barea, E. M.; Abate, A.; Alexander-Webber, J. A.; Huang, J.; Saliba, M.; Mora-Sero, I.; Bisquert, J.; Snaith, H. J.; et al. Low-temperature Processed Electron Collection Layers of graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano Lett. 2013, 14, 724–730. DOI: 10.1021/nl403997a.
  • Ubar, R.; Raik, J.; Vierhaus, H. T.; eds.. Design and Test Technology for Dependable Systems-on-chip. New York: IGI Global. 2011. pp. 339–359.
  • Jensen, E. T.;. The Future of the Law of Armed Conflict: Ostriches, Butterflies, and Nanobots. Mich. J. Int. L. 2013, 35, 253.
  • Wu, W.; Zhang, G.; Ke, X.; Yang, X.; Wang, Z.; Liu, C. Preparation and Thermal Conductivity Enhancement of Composite Phase Change Materials for Electronic Thermal Management. Ener. Convers. Manag. 2015, 101, 278–284. DOI: 10.1016/j.enconman.2015.05.050.
  • Pust, P.; Schmidt, P. J.; Schnick, W. A Revolution in Lighting. Nature Mater. 2015, 14, 454. DOI: 10.1038/nmat4270.
  • Lu, W.; Zu, M.; Byun, J. H.; Kim, B. S.; Chou, T. W. State of the Art of Carbon Nanotube Fibers: Opportunities and Challenges. Adv. Mater. 2012, 24, 1805–1833. DOI: 10.1002/adma.201104672.
  • Jang, D.; Park, S. J.; Yook, S. J.; Lee, K. S. The Orientation Effect for Cylindrical Heat Sinks with Application to LED Light Bulbs. Int. J. Heat Mass Trans. 2014, 71, 496–502. DOI: 10.1016/j.ijheatmasstransfer.2013.12.037.
  • Zhao, X. J.; Cai, Y. X.; Wang, J.; Li, X. H.; Zhang, C. Thermal Model Design and Analysis of the High-power LED Automotive Headlight Cooling Device. Appl. Therm. Eng. 2015, 75, 248–258. DOI: 10.1016/j.applthermaleng.2014.09.066.
  • Qian, R.; Yu, J.; Wu, C.; Zhai, X.; Jiang, P. Alumina-coated Graphene Sheet Hybrids for Electrically Insulating Polymer Composites with High Thermal Conductivity. Rsc Adv. 2013, 3, 17373–17379. DOI: 10.1039/c3ra42104j.
  • Yang, K.; Gu, M. Enhanced Thermal Conductivity of Epoxy Nanocomposites Filled with Hybrid Filler System of Triethylenetetramine-functionalized Multi-walled Carbon Nanotube/silane-modified Nano-sized Silicon Carbide. Compos. A Appl. Sci. Manufact. 2010, 41, 215–221. DOI: 10.1016/j.compositesa.2009.10.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.