686
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Interlaminar fracture toughness and fatigue fracture of continuous fiber-reinforced polymer composites with carbon-based nanoreinforcements: a review

ORCID Icon, &
Pages 1041-1076 | Received 18 Oct 2019, Accepted 17 Jan 2020, Published online: 02 Feb 2020

References

  • Mall, S.; Katwyk, D. W.; Bolick, R. L.; Kelkar, A. D.; Davis, D. C. Tension-Compression Fatigue Behavior of a H-VARTM Manufactured Unnotched and Notched Carbon/Epoxy Composite. Compos. Struct. 2009, 90(2), 201–207.
  • Lee, J.; Soutis, C. A Study on the Compressive Strength of Thick Carbon Fibre-Epoxy Laminates. Compos. Sci. Technol. 2007, 67(10), 2015–2026.
  • Ohsawa, T.; Miwa, M.; Kawade, M.; Tsushima, E. Axial Compressive Strength of Carbon Fiber. J. Appl. Polym. Sci. 1990, 39(8), 1733–1743.
  • Davis, D. C.; Whelan, B. D. An Experimental Study of Interlaminar Shear Fracture Toughness of a Nanotube Reinforced Composite. Compos. Part B. 2011, 42, 105–116.
  • Allegri, G.; Jones, M. I.; Wisnom, M. R.; Hallett, S. R. A New Semi-Empirical Model for Stress Ratio Effect on Mode II Fatigue Delamination Growth. Compos. Part Appl. Sci. Manuf. 2011, 42(7), 733–740.
  • Baltopoulos, A.; Kostopoulos, V. Multifunctional Carbon Nanotube-Based Nano-Composites for Aerospace Applications, Multifunctionality of Polymer Composites; Elsevier: Amsterdam, 2015; pp 448–490.
  • Kassapoglou, C.;. Delaminations, Modeling the Effect of Damage in Composite Structures; Wiley: Chichester, 2015; pp 57–104.
  • Mouritz, A. P.; Bannister, M. K.; Falzon, P. J.; Leong, K. H. Review of Applications for Advanced Three-Dimensional Fibre Textile Composites. Compos. Part Appl. Sci. Manuf. 1999, 30(12), 1445–1461.
  • Shu, D.; Mai, Y. W. Effect of Stitching on Interlaminar Delamination Extension in Composite Laminates. Compos. Sci. Technol. 1993, 49(2), 165–171.
  • Chen, L.; Ifju, P. G.; Sankar, B. V. A Novel Double Cantilever Beam Test for Stitched Composite Laminates. J. Compos. Mater. 2000, 35, 1137–1149.
  • Dransfield, K.; Baillie, C.; Mai, Y. W. Improving the Delamination Resistance of CFRP by Stitching-a Review. Compos. Sci. Technol. 1994, 50(3), 305–317.
  • Dransfield, K. A.; Jain, L. K.; Mai, Y.-W. On the Effects of Stitching in CFRPs—I. Mode I Delamination Toughness. Compos. Sci. Technol. 1998, 58(6), 815–827.
  • Reeder, J. R.;. Stitching Vs. A Toughned Matrix: Compression Strength Effects. J. Compos. Mater. 1995, 29(18), 2464–2487.
  • Lenzi, F.; Riccio, A.; Clarke, A.; Creemers, R. Coupon Tests on Z-Pinned and Unpinned Composite Samples for Damage Resistant Applications. Macromol. Symp. 2007, 247, 230–237.
  • Mouritz, A. P. Review of Z-Pinned Composite Laminates. Compos. Part Appl. Sci. Manuf. 2007, 38(12), 2383–2397.
  • Liu, H. Y.; Mai, Y. W. Delamination Fracture Mechanics of Composite Laminates with Through-Thickness Pinning. Strength Fract. Complex. 2003, 1(2003), 139–146.
  • Partridge, I. K.; Cartié, D. D. R. Delamination Resistant Laminates by Z-Fiber® Pinning: Part I Manufacture and Fracture Performance. Compos. Part Appl. Sci. Manuf. 2005, 36(1), 55–64.
  • Byrd, L. W.; Birman, V. Effectiveness of Z-Pins in Preventing Delamination of Co-Cured Composite Joints on the Example of a Double Cantilever Test. Compos. Part B Eng. 2006, 37(4–5), 365–378.
  • Virakthi, A.; Kwon, S.; Lee, S. W.; Robeson, M. E. Delamination Resistance of Composite Laminated Structures Reinforced with Angled, Threaded, and Anchored Z-Pins. J. Compos. Mater. 2019, 53(11), 1507–1519.
  • Hojo, M.; Nakashima, K.; Kusaka, T.; Tanaka, M.; Adachi, T.; Fukuoka, T.; Ishibashi, M. Mode I Fatigue Delamination of Zanchor-Reinforced CF/Epoxy Laminates. Int. J. Fatigue. 2010, 32(1), 37–45.
  • Pegorin, F.; Pingkarawat, K.; Mouritz, A. P. Comparative Study of the Mode I and Mode II Delamination Fatigue Properties of Z-Pinned Aircraft Composites. Mater. Des. 2014, 65, 139–146.
  • Chang, P.; Mouritz, A. P.; Cox, B. N. Flexural Properties of Z-Pinned Laminates. Compos. Part Appl. Sci. Manuf. 2007, 38(2), 244–251.
  • Dickinson, L. C.; Farley, G. L.; Hinders, M. K. Prediction of Effective Three- Dimensional Elastic Constans of Translaminar Reinforced Composites. J. Compos. Mater. 1999, 33(11), 1002–1029.
  • Steeves, C. A.; Fleck, N. A. In-Plane Properties of Composite Laminates with through - Thickness Pin Reinforcement. Int. J. Solids Struct. 2006, 43, 3197–3212.
  • Mouritz, A. P.; Cox, B. N. A Mechanistic Interpretation of the Comparative In-Plane Mechanical Properties of 3D Woven, Stitched and Pinned Composites. Compos. Part Appl. Sci. Manuf. 2010, 41(6), 709–728.
  • Mouritz, A. P.; Chang, P. Tension Fatigue of Fibre-Dominated and Matrix-Dominated Laminates Reinforced with z-Pins. Int. J. Fatigue. 2010, 32(4), 650–658.
  • Cox, B. N.; Dadkhah, M. S.; Morris, W. L.; Flintoff, J. G. Failure Mechanisms of 3D Woven Composites in Tension, Compression, and Bending. Acta Metall. Mater. 1994, 42(12), 3967–3984. DOI: 10.1016/0956-7151(94)90174-0.
  • Hojo, M.; Ando, T.; Tanaka, M.; Adachi, T.; Ochiai, S.; Endo, Y. Modes I and II Interlaminar Fracture Toughness and Fatigue Delamination of CF/Epoxy Laminates with Self-Same Epoxy Interleaf. Int. J. Fatigue. 2006, 28(10), 1154–1165.
  • Ogihara, S.; Takeda, N.; Kobayashi, S.; Kobayashi, A. Effects of Stacking Sequence on Microscopic Fatigue Damage Development in Quasi-Isotropic CFRP Laminates with Interlaminar-Toughened Layers. Compos. Sci. Technol. 1999, 59(9), 1387–1398.
  • Arai, M.; Noro, Y.; Sugimoto, K. I.; Endo, M. Mode I and Mode II Interlaminar Fracture Toughness of CFRP Laminates Toughened by Carbon Nanofiber Interlayer. Compos. Sci. Technol. 2008, 68(2), 516–525.
  • Yao, N.; Lordi, V. Young’s Modulus of Single-Walled Carbon Nanotubes. J. Appl. Phys. 1998, 84(4), 1939–1943. DOI: 10.1063/1.368323.
  • Wong, E. W.; Sheehan, P. E.; Lieber, C. M. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science. 1997, 277(5334), 1971–1975. DOI: 10.1126/science.277.5334.1971.
  • Yu, M.;. Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes under Tensile Load. Science. 2000, 287(5453), 637–640. DOI: 10.1126/science.287.5453.637.
  • Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties. Phys. Rev. Lett. 2000, 84(24), 5552–5555.
  • Berber, S.; Kwon, Y.-K.; Tománek, D. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84(20), 4613–4616. DOI: 10.1103/PhysRevLett.84.4613.
  • Pop, E.; Mann, D.; Wang, Q.; Goodson, K.; Dai, H. Thermal Conductance of an Individual Single-Wall Carbon Nanotube above Room Temperature. Nano Lett. 2006, 6(1), 96–100. DOI: 10.1021/nl052145f.
  • Harper, P. W.; Hallett, S. R. Cohesive Zone Length in Numerical Simulations of Composite Delamination. Eng. Fract. Mech. 2008, 75(16), 4774–4792. DOI: 10.1016/j.engfracmech.2008.06.004.
  • Zhao, L.; Gong, Y.; Zhang, J.; Chen, Y.; Fei, B. Simulation of Delamination Growth in Multidirectional Laminates under Mode I and Mixed Mode I/II Loadings Using Cohesive Elements. Compos. Struct. 2014, 116, 509–522. DOI: 10.1016/j.compstruct.2014.05.042.
  • Lu, X.; Ridha, M.; Chen, B. Y.; Tan, V. B. C.; Tay, T. E. On Cohesive Element Parameters and Delamination Modelling. Eng. Fract. Mech. 2019, 206, 278–296.
  • Kumar, P.; Kakyal, A. Simulation of Cracks in Fiber Reinforced Composite Plate. Key Eng. Mater. 2011, 471–472, 892–897. DOI: 10.4028/www.scientific.net/KEM.471-472.892.
  • Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Bauhofer, W.; Schulte, K. Influence of Nano-Modification on the Mechanical and Electrical Properties of Conventional Fibre-Reinforced Composites. Compos. Part Appl. Sci. Manuf. 2005, 36(11), 1525–1535.
  • Sager, R. J.; Klein, P. J.; Lagoudas, D. C.; Zhang, Q.; Liu, J.; Dai, L.; Baur, J. W. Effect of Carbon Nanotubes on the Interfacial Shear Strength of T650 Carbon Fiber in an Epoxy Matrix. Compos. Sci. Technol. 2009, 69(7–8), 898–904.
  • Coleman, J. N.; Khan, U.; Blau, W. J.; Gun’ko, Y. K. Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube-Polymer Composites. Carbon. 2006, 44(9), 1624–1652.
  • Gojny, F. H.; Wichmann, M.; Fiedler, B.; Schulte, K. Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites – A Comparative Study. Compos. Sci. Technol. 2005, 65(15–16), 2300–2313.
  • Kamae, T.; Drzal, L. T. Carbon Fiber/Epoxy Composite Property Enhancement through Incorporation of Carbon Nanotubes at the Fiber – Matrix Interphase – Part I : The Development of Carbon Nanotube Coated Carbon Fibers and the Evaluation of Their Adhesion. Compos. A. 2012, 43, 1569–1577.
  • Zhou, Y.; Pervin, F.; Jeelani, S.; Mallick, P. K. Improvement in Mechanical Properties of Carbon Fabric–Epoxy Composite Using Carbon Nanofibers. J. Mater. Process. Technol. 2008, 198(1), 445–453.
  • Shan, F. L.; Gu, Y. Z.; Li, M.; Liu, Y. N.; Zhang, Z. G. Effect of Deposited Carbon Nanotubes on Interlaminar Properties of Carbon Fiber-Reinforced Epoxy Composites Using a Developed Spraying Processing. Polym. Compos. 2013, 16(2), 41–50.
  • Song, Y. S.; Youn, J. R. Influence of Dispersion States of Carbon Nanotubes on Mechanical and Electrical Properties of Epoxy Nanocomposites. Carbon. 2005, 43(September), 1378–1385.
  • Gopal, N.; Kuo, H.; Cheng, F.; Cai, J.; Li, L.; Hwa, S.; Zhao, J.; Yu, S. Improvement of Mechanical and Thermal Properties of Carbon Nanotube Composites through Nanotube Functionalization and Processing Methods. Mater. Chem. Phys. 2009, 117, 313–320.
  • Manchado, M. A. L.; Valentini, L.; Biagiotti, J.; Kenny, J. M. Thermal and Mechanical Properties of Single-Walled Carbon Nanotubes-Polypropylene Composites Prepared by Melt Processing. Carbon. 2005, 43, 1499–1505.
  • Sahoo, N. G.; Cheng, H. K. F.; Cai, J. W.; Li, L.; Chan, S. H.; Zhao, J. H.; Yu, S. Z. Improvement of Mechanical and Thermal Properties of Carbon Nanotube Composites through Nanotube Functionalization and Processing Methods. Mater. Chem. Phys. 2009, 117(1), 313–320.
  • Meguid, S. A.; Sun, Y. On the Tensile and Shear Strength of Nano-Reinforced Composite Interfaces. Mater. Des. 2004, 25(4), 289–296. DOI: 10.1016/j.matdes.2003.10.018.
  • Davis, D. C.; Wilkerson, J. W.; Zhu, J.; Ayewah, D. O. O. Improvements in Mechanical Properties of a Carbon Fiber Epoxy Composite Using Nanotube Science and Technology. Compos. Struct. 2010, 92(11), 2653–2662. DOI: 10.1016/j.compstruct.2010.03.019.
  • Kim, M.; Park, Y.-B.; Okoli, O. I.; Zhang, C. Processing, Characterization, and Modeling of Carbon Nanotube-Reinforced Multiscale Composites. Compos. Sci. Technol. 2009, 69(3–4), 335–342. DOI: 10.1016/j.compscitech.2008.10.019.
  • Awan, F. S.; Fakhar, M. A.; Khan, L. A.; Zaheer, U.; Khan, A. F.; Subhani, T. Interfacial Mechanical Properties of Carbon Nanotube-Deposited Carbon Fiber Epoxy Matrix Hierarchical Composites. Compos. Interfaces. 2018, 25(8), 681–699. DOI: 10.1080/09276440.2018.1439620.
  • Zhou, Y.; Pervin, F.; Lewis, L.; Jeelani, S. Fabrication and Characterization of Carbon/Epoxy Composites Mixed with Multi-Walled Carbon Nanotubes. Mater. Sci. Eng. A. 2008, 475, 157–165.
  • Green, K. J.; Dean, D. R.; Vaidya, U. K.; Nyairo, E. Multiscale Fiber Reinforced Composites Based on a Carbon Nanofiber/Epoxy Nanophased Polymer Matrix: Synthesis, Mechanical, and Thermomechanical Behavior. Compos. Part Appl. Sci. Manuf. 2009, 40(9), 1470–1475.
  • Gojny, F. H.; Wichmann, M. H. G.; Köpke, U.; Fiedler, B.; Schulte, K. Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content. Compos. Sci. Technol. 2004, 64, 2363–2371.
  • Bekyarova, E.; Bekyarova, E.; Thostenson, E. T.; Thostenson, E. T.; Yu, A.; Yu, A.; Kim, H.; Kim, H.; Gao, J.; Gao, J.;; et al. Multiscale Carbon Nanotube-Carbon Fiber Reinforcement for Advanced Epoxy Composites. Langmuir. 2007, 23(7), 3970–3974.
  • Li, M.; Gu, Y.; Liu, Y.; Li, Y.; Zhang, Z. Interfacial Improvement of Carbon Fiber/Epoxy Composites Using a Simple Process for Depositing Commercially Functionalized Carbon Nanotubes on the Fibers. Carbon. 2013, 52, 109–121.
  • Siddiqui, N. A.; Sham, M.-L.; Tang, B. Z.; Munir, A.; Kim, J.-K. Tensile Strength of Glass Fibres with Carbon Nanotube–Epoxy Nanocomposite Coating. Compos. Part Appl. Sci. Manuf. 2009, 40(10), 1606–1614. DOI: 10.1016/j.compositesa.2009.07.005.
  • Kostopoulos, V.; Baltopoulos, A.; Karapappas, P.; Vavouliotis, A.; Paipetis, A. Impact and After-Impact Properties of Carbon Fibre Reinforced Composites Enhanced with Multi-Wall Carbon Nanotubes. Compos. Sci. Technol. 2010, 70(4), 553–563. DOI: 10.1016/j.compscitech.2009.11.023.
  • Khan, S. U.; Impact, K. J. Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites : A Review. Int. J. Aeronaut. Space Sci. 2011, 12(2), 115–133.
  • Fenner, J. S.; Daniel, I. M. Hybrid Nanoreinforced Carbon/Epoxy Composites for Enhanced Damage Tolerance and Fatigue Life. Compos. A. 2014, 65, 47–56.
  • Thostenson, E. T.; Ren, Z.; Chou, T.-W. Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review. Compos. Sci. Technol. 2001, 61(13), 1899–1912.
  • Thostenson, E. T.; Li, C.; Chou, T. W. Nanocomposites in Context. Compos. Sci. Technol. 2005, 65(3–4), 491–516.
  • Hussain, F.; Hojjati, M.; Okamoto, M.; Gorga, R. E. Review Article: Polymer-Matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview. J. Compos. Mater. 2006, 40(17), 1511–1575.
  • Chou, T.-W.; Gao, L.; Thostenson, E. T.; Zhang, Z.; Byun, J.-H. An Assessment of the Science and Technology of Carbon Nanotube-Based Fibers and Composites. Compos. Sci. Technol. 2010, 70, 1–19.
  • Bethune, D. S.; Kiang, C. H.; de Vries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Cobalt-Catalysed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature. 1993, 363(6430), 605–607.
  • Iijima, S.; Ichihashi, T. Single-Shell Carbon Nanotubes of 1-Nm Diameter. Nature. 1993, 363(6430), 603–605.
  • Iijima, S.;. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354(6348), 56–58.
  • Despres, J. F.; Daguerre, D.; Lafdi, K. Flexibility of Carbon Layers in Carbon Nanotubes. Carbon. 1995, 33, 87–92.
  • Dresselhaus, M. S.; Lin, Y. M.; Rabin, O.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A.; Saito, R.; Samsonidze, G.; Dresselhaus, G. Nanowires and Nanotubes. Mater. Sci. Eng. C. 2003, 23(1–2), 129–140.
  • Sammalkorpi, M.; Krasheninnikov, A.; Kuronen, A.; Nordlund, K.; Kaski, K. Mechanical Properties of Carbon Nanotubes with Vacancies and Related Defects. Phys. Rev. B. 2004, 70(24), 1–8.
  • Ebbesen, T. W.; Ajayan, P. M. Large-Scale Synthesis of Carbon Nanotubes. Nature. 1992, 358(6383), 220–222.
  • Guo, T.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization. Chem. Phys. Lett. 1995, 243(September), 49–54.
  • Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G.;; et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science. 1996, 273(5274), 483–487.
  • Li, W. Z.; Xie, S. S.; Qian, L. X.; Chang, H.; Zou, B. S.; Zhou, W. Y.; Zhao, R. A.; Wang, G. Large-Scale Synthesis of Aligned Carbon Nanotubes. Science. 1996, 274, 1701–1703.
  • Zhang, Q.; Liu, J.; Sager, R.; Dai, L.; Baur, J. Hierarchical Composites of Carbon Nanotubes on Carbon Fiber: Influence of Growth Condition on Fiber Tensile Properties. Compos. Sci. Technol. 2009, 69(5), 594–601.
  • Tai, N. H.; Yeh, M. K.; Liu, J. H. Enhancement of the Mechanical Properties of Carbon Nanotube/Phenolic Composites Using a Carbon Nanotube Network as the Reinforcement. Carbon. 2004, 42(12–13), 2774–2777.
  • Sun, X.; Zhao, W. Prediction of Stiffness and Strength of Single-Walled Carbon Nanotubes by Molecular-Mechanics Based Finite Element Approach. Mater. Sci. Eng. A. 2005, 390(1–2), 366–371.
  • Song, H.; Shen, W. Carbon Nanofibers: Synthesis and Applications. J. Nanosci. Nanotechnol. 2014, 14(2), 1799–1810.
  • Feng, L.; Xie, N.; Zhong, J. Carbon Nanofibers and Their Composites: A Review of Synthesizing, Properties and Applications. Materials. 2014, 7(5), 3919–3945.
  • Huang, S.; Woodson, M.; Smalley, R.; Liu, J. Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using “Fast-heating” Chemical Vapor Deposition Process. Nano Lett. 2004, 4(6), 1025–1028. DOI: 10.1021/nl049691d.
  • Lubineau, G.; Rahaman, A. A Review of Strategies for Improving the Degradation Properties of Laminated Continuous-Fiber/Epoxy Composites with Carbon-Based Nanoreinforcements. Carbon. 2012, 50(7), 2377–2395.
  • Zhang, H.; Liu, Y.; Kuwata, M.; Bilotti, E.; Peijs, T. Improved Fracture Toughness and Integrated Damage Sensing Capability by Spray Coated CNTs on Carbon Fibre Prepreg. Compos. Part Appl. Sci. Manuf. 2015, 70, 102–110.
  • Rodríguez-González, J. A.; Rubio-González, C.; Meneses-Nochebuena, C. A.; González-García, P.; Licea-Jiménez, L. Enhanced Interlaminar Fracture Toughness of Unidirectional Carbon Fiber/Epoxy Composites Modified with Sprayed Multi-Walled Carbon Nanotubes. Compos. Interfaces. 2017, 24(9), 883–896.
  • Sandler, J.; Shaffer, M. S. P.; Prasse, T.; Bauhofer, W.; Schulte, K.; Windle, A. H. Development of a Dispersion Process for Carbon Nanotubes in an Epoxy Matrix and the Resulting Electrical Properties. Polymer. 1999, 40(21), 5967–5971.
  • Kovacs, J. Z.; Andresen, K.; Roman, J.; Pardo, C.; Schossig, M.; Schulte, K.; Bauhofer, W. Analyzing the Quality of Carbon Nanotube Dispersions in Polymers Using Scanning Electron Microscopy. Carbon. 2007, 45, 1279–1288.
  • Kinloch, I.; Roberts, S.; Kinloch, I. A.; Roberts, S. A.; Windle, A. H. A Rheological Study of Concentrated Aqueous Nanotube Dispersions. Polymer. 2002, 43(May 2014), 7483–7491.
  • Huang, Y. Y.; Ahir, S. V.; Terentjev, E. M. Dispersion Rheology of Carbon Nanotubes in a Polymer Matrix. Phys. Rev. B. 2006, 73(12), 1–9.
  • Lachman, N.; Wagner, H. D. Correlation between Interfacial Molecular Structure and Mechanics in CNT/Epoxy Nano-Composites. Compos. A. 2010, 41(9), 1093–1098.
  • Kinloch, A. J.; Mohammed, R. D.; Taylor, A. C.; Eger, C.; Sprenger, S.; Egan, D. The Effect of Silica Nano Particles and Rubber Particles on the Toughness of Multiphase Thermosetting Epoxy Polymers. J. Mater. Sci. 2005, 40(18), 5083–5086.
  • Hsieh, T. H.; Kinloch, A. J.; Masania, K.; Taylor, A. C.; Sprenger, S. The Mechanisms and Mechanics of the Toughening of Epoxy Polymers Modified with Silica Nanoparticles. Polymer. 2010, 51(12), 6284–6294.
  • Adachi, T.; Osaki, M.; Araki, W.; Kwon, S. C. Fracture Toughness of Nano- and Micro-Spherical Silica-Particle-Filled Epoxy Composites. Acta Mater. 2008, 56(9), 2101–2109.
  • Dittanet, P.; Pearson, R. A. Effect of Silica Nanoparticle Size on Toughening Mechanisms of Filled Epoxy. Polymer. 2012, 53(9), 1890–1905.
  • Zamanian, M.; Mortezaei, M.; Salehnia, B.; Jam, J. E. Fracture Toughness of Epoxy Polymer Modified with Nanosilica Particles: Particle Size Effect. Eng. Fract. Mech. 2013, 97(1), 193–206.
  • Kothmann, M. H.; Zeiler, R.; Rios De Anda, A.; Brückner, A.; Altstädt, V. Fatigue Crack Propagation Behaviour of Epoxy Resins Modified with Silica-Nanoparticles. Polymer. 2015, 60, 157–163.
  • Tsai, J.-L.; Huang, B.-H.; Cheng, Y.-L. Enhancing Fracture Toughness of Glass/Epoxy Composites by Using Rubber Particles Together with Silica Nanoparticles. J. Compos. Mater. 2009, 43(25), 3107–3123. DOI: 10.1177/0021998309345299.
  • Wetzel, B.; Rosso, P.; Haupert, F.; Friedrich, K. Epoxy Nanocomposites - Fracture and Toughening Mechanisms. Eng. Fract. Mech. 2006, 73(16), 2375–2398.
  • Garcia, E. J.; Wardle, B. L.; Hart, A. J.; Yamamoto, N. Fabrication and Multifunctional Properties of a Hybrid Laminate with Aligned Carbon Nanotubes Grown in Situ. Compos. Sci. Technol. 2008, 68(9), 2034–2041.
  • Sahoo, N. G.; Rana, S.; Cho, J. W.; Li, L.; Chan, S. H. Polymer Nanocomposites Based on Functionalized Carbon Nanotubes. Prog. Polym. Sci. 2010, 35(7), 837–867.
  • Ahir, S. V.; Terentjev, E. M. Polymers Containing Carbon Nanotubes: Active Composite Materials. Polymer. 2008, 1, 3841–3854.
  • McNally, T.; Potschke, P.; Halley, P.; Murphy, M.; Martin, D.; Bell, S. E. J.; Brennan, G. P.; Bein, D.; Lemoine, P.; Quinn, J. P. Polyethylene Multiwalled Carbon Nanotube Composites. Polymer. 2005, 46, 8222–8232.
  • Potschke, P.; Fornes, T. D.; Paul, D. R. Rheological Behavior of Multiwalled Carbon Nanotube/Polycarbonate Composites. Polymer. 2002, 43(2002), 3247–3255.
  • Pötschke, P.; Bhattacharyya, A. R.; Janke, A.; Goering, H. Melt Mixing of Polycarbonate/Multi-Wall Carbon Nanotube Composites. Compos. Interfaces. 2003, 10(4–5), 389–404.
  • Ghose, S.; Watson, K. A.; Sun, K. J.; Criss, J. M.; Siochi, E. J.; Connell, J. W. High Temperature Resin/Carbon Nanotube Composite Fabrication. Compos. Sci. Technol. 2006, 66, 1995–2002.
  • Lee, C.; Wei, U. K. Resin Transfer Molding (RTM) Process of a High Performance Epoxy Resin. II: Effects of Process Variables on the Physical, Static and Dynamic Mechanical Behavior. Polym. Eng. Sci. 2000, 40, 935.
  • Gojny, F.; Nastalczyk, J.; Roslaniec, Z.; Schulte, K. Surface Modified Multi-Walled Carbon Nanotubes in CNT/Epoxy-Composites. Chem. Phys. Lett. 2003, 370, 820–824.
  • Gojny, F. H.; Schulte, K. Functionalisation Effect on the Thermo-Mechanical Behaviour of Multi-Wall Carbon Nanotube/Epoxy-Composites. Compos. Sci. Technol. 2004, 64, 2303–2308.
  • Kepple, K. L.; Sanborn, G. P.; Lacasse, P. A.; Gruenberg, K. M.; Ready, W. J. Improved Fracture Toughness of Carbon Fiber Composite Functionalized with Multi Walled Carbon Nanotubes. Carbon. 2008, 46(15), 2026–2033.
  • Ma, P.-C.; Siddiqui, N. A.; Marom, G.; Kim, J.-K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part Appl. Sci. Manuf. 2010, 41(10), 1345–1367. DOI: 10.1016/j.compositesa.2010.07.003.
  • Wernik, J. M.; Meguid, S. A. On the Mechanical Characterization of Carbon Nanotube Reinforced Epoxy Adhesives. Mater. Des. 2014, 59, 19–32.
  • Sadeghian, R.; Gangireddy, S.; Minaie, B.; Hsiao, K. T. Manufacturing Carbon Nanofibers Toughened Polyester/Glass Fiber Composites Using Vacuum Assisted Resin Transfer Molding for Enhancing the Mode-I Delamination Resistance. Compos. Part Appl. Sci. Manuf. 2006, 37(10), 1787–1795.
  • Ladani, R. B.; Ravindran, A. R.; Wu, S.; Pingkarawat, K.; Kinloch, A. J.; Mouritz, A. P.; Ritchie, R. O.; Wang, C. H. Multi-Scale Toughening of Fibre Composites Using Carbon Nanofibres and z-Pins. Compos. Sci. Technol. 2016, 131, 98–109.
  • Warrier, A.; Godara, A.; Rochez, O.; Mezzo, L.; Luizi, F.; Gorbatikh, L.; Lomov, S. V.; VanVuure, A. W.; Verpoest, I. The Effect of Adding Carbon Nanotubes to Glass/Epoxy Composites in the Fibre Sizing And/or the Matrix. Compos. Part Appl. Sci. Manuf. 2010, 41(4), 532–538.
  • Wicks, S. S.; de Villoria, R. G.; Wardle, B. L. Interlaminar and Intralaminar Reinforcement of Composite Laminates with Aligned Carbon Nanotubes. Compos. Sci. Technol. 2010, 70(1), 20–28.
  • Veedu, V. P.; Cao, A.; Li, X.; Ma, K.; Soldano, C.; Kar, S.; Ajayan, P. M.; Ghasemi-Nejhad, M. N. Multifunctional Composites Using Reinforced Laminae with Carbon-Nanotube Forests. Nat. Mater. 2006, 5(6), 457–462.
  • An, Q.; Rider, A. N.; Thostenson, E. T. Electrophoretic Deposition of Carbon Nanotubes onto Carbon-Fiber Fabric for Production of Carbon/Epoxy Composites with Improved Mechanical Properties. Carbon. 2012, 50(11), 4130–4143.
  • An, Q.; Rider, A. N.; Thostenson, E. T. Hierarchical Composite Structures Prepared by Electrophoretic Deposition of Carbon Nanotubes onto Glass Fibers. ACS Appl. Mater. Interfaces. 2013, 5(6), 2022–2032.
  • Godara, A.; Gorbatikh, L.; Kalinka, G.; Warrier, A.; Rochez, O.; Mezzo, L.; Luizi, F.; Vuure, A. W. V.; Lomov, S. V.; Verpoest, I. Interfacial Shear Strength of a Glass Fiber/Epoxy Bonding in Composites Modified with Carbon Nanotubes. Compos. Sci. Technol. 2010, 70, 1346–1352.
  • Zhu, S.; Su, C.-H.; Lehoczky, S. L.; Muntele, I.; Ila, D. Carbon Nanotube Growth on Carbon Fibers. Diam. Relat. Mater. 2003, 12(10–11), 1825–1828.
  • Otsuka, K.; Abe, Y.; Kanai, N.; Kobayashi, Y.; Takenaka, S.; Tanabe, E. Synthesis of Carbon Nanotubes on Ni/Carbon-Fiber Catalysts under Mild Conditions. Carbon. 2004, 42(4), 727–736.
  • Ismagilov, Z. R.; Shikina, N. V.; Kruchinin, V. N.; Rudina, N. A.; Ushakov, V. A.; Vasenin, N. T.; Veringa, H. J. Development of Methods of Growing Carbon Nanofibers on Silica Glass Fiber Supports. Catal. Today. 2005, 102–103, 85–93.
  • Thostenson, E. T.; Li, W. Z.; Wang, D. Z.; Ren, Z. F.; Chou, T. W. Carbon Nanotube/Carbon Fiber Hybrid Multiscale Composite. J. Appl. Phys. 2002, 91(9), 6034–6037.
  • Riccardis, M. F. D.; Carbone, D.; Makris, T. D.; Giorgi, R.; Lisi, N.; Salernitano, E. Anchorage of Carbon Nanotubes Grown on Carbon Fibres. Carbon. 2006, 44(4), 671–674.
  • Gong, Q.-J.; Li, H.-J.; Wang, X.; Fu, Q.-G.; Wang, Z.; Li, K.-Z. In Situ Catalytic Growth of Carbon Nanotubes on the Surface of Carbon Cloth. Compos. Sci. Technol. 2007, 67(14), 2986–2989.
  • Hu, N.; Li, Y.; Nakamura, T.; Katsumata, T.; Koshikawa, T.; Arai, M. Reinforcement Effects of MWCNT and VGCF in Bulk Composites and Interlayer of CFRP Laminates. Compos. Part B Eng. 2012, 43(1), 3–9.
  • Li, Y.; Hori, N.; Arai, M.; Hu, N.; Liu, Y.; Fukunaga, H. Improvement of Interlaminar Mechanical Properties of CFRP Laminates Using VGCF. Compos. Part Appl. Sci. Manuf. 2009, 40(12), 2004–2012.
  • Arai, M.; Matsushita, K.; Hirota, S. Criterion for Interlaminar Strength of CFRP Laminates Toughened with Carbon Nanofiber Interlayer. Compos. Part Appl. Sci. Manuf. 2011, 42(7), 703–711.
  • Mujika, F.; Vargas, G.; Ibarretxe, J.; De Gracia, J.; Arrese, A. Influence of the Modification with MWCNT on the Interlaminar Fracture Properties of Long Carbon Fiber Composites. Compos. Part B. 2012, 43(3), 1336–1340.
  • Almuhammadi, K.; Alfano, M.; Yang, Y.; Lubineau, G. Analysis of Interlaminar Fracture Toughness and Damage Mechanisms in Composite Laminates Reinforced with Sprayed Multi-Walled Carbon Nanotubes. Mater. Des. 2014, 53, 921–927.
  • Thakre, P. R.; Lagoudas, D. C.; Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.; Ratcliffe, J. G.; Zhu, J.; Barrera, E. V. Investigation of the Effect of Single Wall Carbon Nanotubes on Interlaminar Fracture Toughness of Woven Carbon Fiber—Epoxy Composites. J. Compos. Mater. 2011, 45(10), 1091–1107. DOI: 10.1177/0021998310389088.
  • Li, G.; Li, P.; Zhang, C.; Yu, Y.; Liu, H.; Zhang, S.; Jia, X.; Yang, X.; Xue, Z.; Ryu, S. Inhomogeneous Toughening of Carbon Fiber/Epoxy Composite Using Electrospun Polysulfone Nanofibrous Membranes by in Situ Phase Separation. Compos. Sci. Technol. 2008, 68(3–4), 987–994.
  • Li, G.; Li, P.; Yu, Y.; Jia, X.; Zhang, S.; Yang, X.; Ryu, S. Novel Carbon Fiber/Epoxy Composite Toughened by Electrospun Polysulfone Nanofibers. Mater. Lett. 2008, 62(3), 511–514.
  • Khan, S. U.; Kim, J. Improved Interlaminar Shear Properties of Multiscale Carbon Fiber Composites with Bucky Paper Interleaves Made from Carbon Nanofibers. Carbon. 2012, 50, 5265–5277.
  • Garcia, E. J.; Wardle, B. L.; John Hart, A. Joining Prepreg Composite Interfaces with Aligned Carbon Nanotubes. Compos. Part Appl. Sci. Manuf. 2008, 39(6), 1065–1070.
  • Joshi, S. C.; Dikshit, V. Enhancing Interlaminar Fracture Characteristics of Woven CFRP Prepreg Composites through CNT Dispersion. J. Compos. Mater. 2012, 46(6), 665–675.
  • Naik, N. K.; Reddy, K. S.; Meduri, S.; Raju, N. B.; Prasad, P. D.; Azad, S. N. M.; Ogde, P. A.; Reddy, B. C. K. Interlaminar Fracture Characterization for Plain Weave Fabric Composites. J. Mater. Sci. 2002, 37, 2983–2987.
  • Fanteria, D.; Lazzeri, L.; Panettieri, E.; Mariani, U.; Rigamonti, M. Experimental Characterization of the Interlaminar Fracture Toughness of a Woven and a Unidirectional Carbon/Epoxy Composite. Compos. Sci. Technol. 2017, 142, 20–29. DOI: 10.1016/j.compscitech.2017.01.028.
  • de Moura, M. F. S. F.; Campilho, R. D. S. G.; Amaro, A. M.; Reis, P. N. B. Interlaminar and Intralaminar Fracture Characterization of Composites under Mode I Loading. Compos. Struct. 2010, 92(1), 144–149. DOI: 10.1016/j.compstruct.2009.07.012.
  • de Morais, A.;. Mode-I Interlaminar Fracture of Carbon/Epoxy Cross-Ply Composites. Compos. Sci. Technol. 2002, 62(5), 679–686. DOI: 10.1016/S0266-3538(01)00223-8.
  • de Moura, M. F. S. F.; Pereira, A. B.; de Morais, A. B. Influence of Intralaminar Cracking on the Apparent Interlaminar Mode I Fracture Toughness of Cross-Ply Laminates. Fatigue Fract. Eng. Mater. Struct. 2008, 27(9), 759–766. DOI: 10.1111/j.1460-2695.2004.00739.x.
  • Brunner, A. J.;. Experimental Aspects of Mode I and Mode II Fracture Toughness Testing of Fibre-Reinforced Polymer-Matrix Composites. Comput. Methods Appl. Mech. Eng. 2000, 185, 161–172.
  • de Morais, A. B.; de Moura, M. F. S. F. Evaluation of Initiation Criteria Used in Interlaminar Fracture Tests. Eng. Fract. Mech. 2006, 73(16), 2264–2276. DOI: 10.1016/j.engfracmech.2006.05.003.
  • de Morais, A. B.;. Analysis of Mode II Interlaminar Fracture of Multidirectional Laminates. Compos. Part Appl. Sci. Manuf. 2004, 35(1), 51–57. DOI: 10.1016/j.compositesa.2003.09.007.
  • Mathews, M.; Swanson, S. Characterization of the Interlaminar Fracture Toughness of a Laminated Carbon/Epoxy Composite. Compos. Sci. Technol. 2007, 67(7–8), 1489–1498. DOI: 10.1016/j.compscitech.2006.07.035.
  • Davidson, B. D.; Gharibian, S. J.; Yu, L. Evaluation of Energy Release Rate-Based Approaches for Predicting Delamination Growth in Laminated Composites. Int. J. Fract. 2000, 105, 343–365.
  • Reeder, J. R.; Rews, J. H. Mixed-Mode Bending Method for Delamination Testing. Aiaa J. 1990, 28(7), 1270–1276. DOI: 10.2514/3.25204.
  • Benzeggagh, M. L.; Kenane, M. Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites with Mixed-Mode Bending Apparatus. Compos. Sci. Technol. 1996, 56(4), 439–449. DOI: 10.1016/0266-3538(96)00005-X.
  • Christensen, R. M.; DeTeresa, S. J. Delamination Failure Investigation for Out-of-Plane Loading in Laminates. J. Compos. Mater. 2004, 38(24), 2231–2238. DOI: 10.1177/0021998304046431.
  • Pereira, A. B.; de Morais, A. B. Mode I Interlaminar Fracture of Carbon/Epoxy Multidirectional Laminates. Compos. Sci. Technol. 2004, 64(13–14), 2261–2270. DOI: 10.1016/j.compscitech.2004.03.001.
  • Pereira, A. B.; de Morais, A. B.; Marques, A. T.; de Castro, P. T. Mode II Interlaminar Fracture of Carbon/Epoxy Multidirectional Laminates. Compos. Sci. Technol. 2004, 64(10–11), 1653–1659. DOI: 10.1016/j.compscitech.2003.12.001.
  • Tay, T.;. Characterization and Analysis of Delamination Fracture in Composites: An Overview of Developments from 1990 to 2001. Appl. Mech. Rev. 2003, 56(1), 1–32. DOI: 10.1115/1.1504848.
  • Martin, R. H.;. Interlaminar Fracture Characterization. Key Eng. Mater. 1996, 120–121, 329–346. DOI: 10.4028/www.scientific.net/KEM.120-121.329.
  • Brunner, A. J.; Blackman, B. R. K.; Davies, P. A Status Report on Delamination Resistance Testing of Polymer–Matrix Composites. Eng. Fract. Mech. 2008, 75(9), 2779–2794. DOI: 10.1016/j.engfracmech.2007.03.012.
  • Davies, P.; Blackman, B. R. K.; Brunner, A. J. Standard Test Methods for Delamination Resistance of Composite Materials: Current Status. Appl. Compos. Mater. 1998, 5, 345–364.
  • Garg, A. C.;. Delamiantion-A Damage Mode in Composite Structures. Eng. Fract. Mech. 1988, 29, 557–584.
  • Borowski, E.; Soliman, E.; Kandil, U.; Taha, M. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes. Polymers. 2015, 7(6), 1020–1045.
  • ASTM, 2013, Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International, West Conshohocken, PA, Standard No. ASTM D5528-13.
  • International Organisation for Standardisation, Fibre-Reinforced Plastic Composites – Determination of Mode I Interlaminar Fracture Toughness, GIC, for Unidirectionally Reinforced Materials. Standard No. 15024.
  • ASTM 2014, Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. Standard No. ASTM D7905/D7905M-14, ASTM International, West Conshohocken, PA.
  • Kadlec, M.; Šedek, J. Fatigue Delamination of a Carbon Fabric–Reinforced Epoxy Composite with Carbon Nanotubes. Compos. Sci. Technol. 2016, 131, 19.
  • Moura, M. F. S. F. D.;. Interlaminar Mode II Fracture Characterization. In Delamination Behaviour of Composites; Sridharan, S., Eds. Elsevier: New York Washington, DC, 2008; pp 310–326.
  • Carlsson, L. A.; Gillespie, J. W.; Mode II Interlaminar Fracture of Composites, Application of Fracture Mechanics to Composite Materials; Composite Materials Series; Elsevier: Amsterdam, 1989; pp 113–157.
  • Wang, Y.; Williams, J. Corrections for Mode II Fracture Toughness Specimens of Composites Materials. Compos. Sci. Technol. 1992, 43(3), 251–256. DOI: 10.1016/0266-3538(92)90096-L.
  • Reeder, J. R.; Demarco, K.; Whitley, K. S. The Use of Doubler Reinforcement in Delamination Toughness Testing. Compos. Part Appl. Sci. Manuf. 2004, 35(11), 1337–1344. DOI: 10.1016/j.compositesa.2004.02.021.
  • Wichmann, M. H. G.; Sumfleth, J.; Gojny, F. H.; Quaresimin, M.; Fiedler, B.; Schulte, K. Glass-Fibre-Reinforced Composites with Enhanced Mechanical and Electrical Properties - Benefits and Limitations of a Nanoparticle Modified Matrix. Eng. Fract. Mech. 2006, 73(16), 2346–2359.
  • Tugrul Seyhan, A.; Tanoglu, M.; Schulte, K. Mode I and Mode II Fracture Toughness of E-Glass Non-Crimp Fabric/Carbon Nanotube (CNT) Modified Polymer Based Composites. Eng. Fract. Mech. 2008, 75(18), 5151–5162.
  • Karapappas, P.; Vavouliotis, A.; Tsotra, P.; Kostopoulos, V.; Paipetis, A. Enhanced Fracture Properties of Carbon Reinforced Composites by the Addition of Multi-Wall Carbon Nanotubes. J. Compos. Mater. 2009, 43(9), 977–985.
  • Godara, A.; Mezzo, L.; Luizi, F.; Warrier, V. A.; Vuure, L. S.; Van, A. W.; Gorbatikh, L.; Moldenaers, P.; Verpoest, I. Influence of Carbon Nanotube Reinforcement on the Processing and the Mechanical Behaviour of Carbon Fiber/Epoxy Composites. Carbon. 2009, 47(12), 2914–2923.
  • Vavouliotis, A.; Sotiriadls, G.; Kostagiannakopoulou, V.; Kostopoulos, V.; Cinquin, J.; Korzenko, A.; Fontana, Q. Development of Multi-Functional Aerospace Structures Using Modified Composite Pre-Preg Materials. In 16th European Conference on Composite Materials, ECCM; Seville, 2014; p 1.
  • Hamer, S.; Leibovich, H.; Green, A.; Avrahami, R.; Zussman, E.; Siegmann, A.; Sherman, D. Mode I and Mode II Fracture Energy of MWCNT Reinforced Nanofibrilmats Interleaved Carbon/Epoxy Laminates. Compos. Sci. Technol. 2014, 90, 48–56.
  • Wu, S.; Ladani, R. B.; Ravindran, A. R.; Zhang, J.; Mouritz, A. P.; Kinloch, A. J.; Wang, C. H. Aligning Carbon Nanofibres in Glass-Fibre/Epoxy Composites to Improve Interlaminar Toughness and Crack-Detection Capability. Compos. Sci. Technol. 2017, 152, 46–56.
  • Falzon, B. G.; Hawkins, S. C.; Huynh, C. P.; Radjef, R.; Brown, C. An Investigation of Mode I and Mode II Fracture Toughness Enhancement Using Aligned Carbon Nanotubes Forests at the Crack Interface. Compos. Struct. 2013, 106, 65–73. DOI: 10.1016/j.compstruct.2013.05.051.
  • Lewis, D.; Wardle, B. L. Interlaminar Shear Strength Investigation of Aligned Carbon Nanotube-Reinforced Prepreg Composite Interfaces. 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference; American Institute of Aeronautics and Astronautics: Kissimmee, Florida, 2015. DOI: 10.2514/6.2015-0127.
  • Kostopoulos, V.; Tsotra, P.; Karapappas, P.; Tsantzalis, S.; Vavouliotis, A.; Loutas, T. H.; Paipetis, A.; Friedrich, K.; Tanimoto, T. Mode I Interlaminar Fracture of CNF Or/and PZT Doped CFRPs via Acoustic Emission Monitoring. Compos. Sci. Technol. 2007, 67(5), 822–828.
  • Tsantzalis, S.; Karapappas, P.; Vavouliotis, A.; Tsotra, P.; Kostopoulos, V.; Tanimoto, T.; Friedrich, K. On the Improvement of Toughness of CFRPs with Resin Doped with CNF and PZT Particles. Compos. Part Appl. Sci. Manuf. 2007, 38(4), 1159–1162.
  • Yokozeki, T.; Iwahori, Y.; Ishiwata, S.; Enomoto, K. Mechanical Properties of CFRP Laminates Manufactured from Unidirectional Prepregs Using CSCNT-Dispersed Epoxy. Compos. Part Appl. Sci. Manuf. 2007, 38(10), 2121–2130.
  • Quaresimin, M.; Varley, R. J. Understanding the Effect of Nano-Modifier Addition upon the Properties of Fibre Reinforced Laminates. Compos. Sci. Technol. 2008, 68(3–4), 718–726.
  • Subramaniyan, A. K.; Sun, C. T. Interlaminar Fracture Behavior of Nanoclay Reinforced Glass Fiber Composites. J. Compos. Mater. 2008, 42(20), 2111–2122. DOI: 10.1177/0021998308094550.
  • Romhány, G.; Szebényi, G. Interlaminar Crack Propagation in MWCNT/Fiber Reinforced Hybrid Composites. Express Polym. Lett. 2009, 3(3), 145–151.
  • Faulkner, S. D.; Kwon, Y. W.; Bartlett, S.; Rasmussen, E. A. Study of Composite Joint Strength with Carbon Nanotube Reinforcement. J. Mater. Sci. 2009, 44(11), 2858–2864.
  • Bily, M. A.; Kwon, Y. W.; Pollak, R. D. Study of Composite Interface Fracture and Crack Growth Monitoring Using Carbon Nanotubes. Appl. Compos. Mater. 2010, 17(4), 347–362.
  • Zhang, D.; Ye, L.; Deng, S.; Zhang, J.; Tang, Y.; Chen, Y. CF/EP Composite Laminates with Carbon Black and Copper Chloride for Improved Electrical Conductivity and Interlaminar Fracture Toughness. Compos. Sci. Technol. 2012, 72(3), 412–420.
  • Arai, M.; Hirokawa, J.-I.; Hojo, M.; Quaresimin, M. Characteristic of Mode I Fatigue Crack Propagation of CFRP Laminates Toughened with CNF Interlayer. Compos. Part B Eng. 2015, 65(July), 19–24.
  • Kim, H.; Oh, E.; Hahn, H. T.; Lee, K.-H. Enhancement of Fracture Toughness of Hierarchical Carbon Fiber Composites via Improved Adhesion between Carbon Nanotubes and Carbon Fibers. Compos. Part Appl. Sci. Manuf. 2015, 71, 72–83.
  • Ma, L.; Wu, L.; Cheng, X.; Zhuo, D.; Weng, Z.; Wang, R. Improving the Interlaminar Properties of Polymer Composites Using a Situ Accumulation Method to Construct the Multi-Scale Reinforcement of Carbon Nanofibers/Carbon Fibers. Compos. Part Appl. Sci. Manuf. 2015, 72, 65–74.
  • Srivastava, V. K.; Gries, T.; Veit, D.; Quadflieg, T.; Mohr, B.; Kolloch, M. Effect of Nanomaterial on Mode I and Mode II Interlaminar Fracture Toughness of Woven Carbon Fabric Reinforced Polymer Composites. Eng. Fract. Mech. 2017, 180, 73–86.
  • Guzman de Villoria, R.; Hallander, P.; Ydrefors, L.; Nordin, P.; Wardle, B. L. Plane Strength Enhancement of Laminated Composites via Aligned Carbon Nanotube Interlaminar Reinforcement. Compos. Sci. Technol. 2016, 133, 33–39. DOI: 10.1016/j.compscitech.2016.07.006.
  • Blanco, J.; Garcia, E. J.; Guzman de Villoria, R.; Wardle, B. L. Limiting Mechanisms in Mode I Interlaminar Toughness of Composites Reinforced with Aligned Carbon Nanotubes. J. Compos. Mater. 2009, 43(8), 825–841.
  • Frankland, S. J. V.; Harik, V. M. Analysis of Carbon Nanotube Pull-out from a Polymer Matrix. Surf. Sci. 2003, 525(1–3), L103–L108. DOI: 10.1016/S0039-6028(02)02532-3.
  • Fiedler, B.; Gojny, F. H.; Wichmann, M. H. G.; Nolte, M. C. M.; Schulte, K. Fundamental Aspects of Nano-Reinforced Composites. Compos. Sci. Technol. 2006, 66(16), 3115–3125.
  • Tong, L.; Sun, X.; Tan, P. Effect of Long Multi-Walled Carbon Nanotubes on Delamination Toughness of Laminated Composites. J. Compos. Mater. 2008, 42(1), 5–23.
  • Hunston, D. L.; Moulton, R. J.; Johnston, N. J.; Bascom, W. D. American Society for Testing and Materials. Matrix Resin Effects in Composite Delamination: Mode I Fracture Aspects. Toughened Composites, Philadelphia: ASTM; 1987. Standard No. STP937. Toughened Compos. 1987, 74–94.
  • Qiu, J.; Zhang, C.; Wang, B.; Liang, R. Carbon Nanotube Integrated Multifunctional Multiscale Composites. Nanotechnology. 2007, 18(27), 1–11.
  • Fan, Z.; Santare, M. H.; Advani, S. G. Interlaminar Shear Strength of Glass Fiber Reinforced Epoxy Composites Enhanced with Multi-Walled Carbon Nanotubes. Compos. Part Appl. Sci. Manuf. 2008, 39(3), 540–554.
  • Zhu, J.; Imam, A.; Crane, R.; Lozano, K.; Khabashesku, V. N.; Barrera, E. V. Processing a Glass Fiber Reinforeced Vinyl Ester Composite with Nanotube Enhancement of Interlaminar Shear Strength. Compos. Sci. Technol. 2007, 67, 1509–1517.
  • Storck, S.; Malecki, H.; Shah, T.; Zupan, M. Improvements in Interlaminar Strength: A Carbon Nanotube Approach. Compos. Part B Eng. 2011, 42(6), 1508–1516.
  • Fang, C.; Wang, J.; Zhang, T. Interlaminar Improvement of Carbon Fiber/Epoxy Composites via Depositing Mixture of Carbon Nanotubes and Sizing Agent. Appl. Surf. Sci. 2014, 321, 1–9.
  • Zeng, S.; Duan, P.; Shen, M.; Xue, Y.; Lu, F.; Yang, L. Interface Enhancement of Glass Fiber Fabric/Epoxy Composites by Modifying Fibers with Functionalized MWCNTs. Compos. Interfaces. 2019, 26(4), 291–308. DOI: 10.1080/09276440.2018.1499354.
  • ASTM 2000, Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates, ASTM International, West Conshohocken, PA, Standard No. ASTM D 2344/D 2344M – 00.
  • Siddiqui, N. A.; Khan, S. U.; Kim, J.-K. Experimental Torsional Shear Properties of Carbon Fiber Reinforced Epoxy Composites Containing Carbon Nanotubes. Compos. Struct. 2013, 104, 230–238.
  • Turon, A.; Dávila, C. G.; Camanho, P. P.; Costa, J. An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models. Eng. Fract. Mech. 2007, 74(10), 1665–1682. DOI: 10.1016/j.engfracmech.2006.08.025.
  • Alfano, G.; Crisfield, M. A. Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues. Int. J. Numer. Methods Eng. 2001, 50(7), 1701–1736. DOI: 10.1002/nme.93.
  • Dávila, C. G.; Camanho, P. P.; Turon, A. Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements. J. Aircr. 2008, 45(2), 663–672. DOI: 10.2514/1.32832.
  • Zhao, L.; Gong, Y.; Qin, T.; Mehmood, S.; Zhang, J. Failure Prediction of Out-of-Plane Woven Composite Joints Using Cohesive Element. Compos. Struct. 2013, 106, 407–416. DOI: 10.1016/j.compstruct.2013.06.017.
  • Wisnom, M. R.;. Modelling of Splitting and Delamination in Notched Cross-Ply Laminates. Compos. Sci. Technol. 2000, 60(15), 2849–2856. DOI: 10.1016/S0266-3538(00)00170-6.
  • Pinho, S. T.; Iannucci, L.; Robinson, P. Formulation and Implementation of Decohesion Elements in an Explicit Finite Element Code. Compos. Part Appl. Sci. Manuf. 2006, 37(5), 778–789. DOI: 10.1016/j.compositesa.2005.06.007.
  • Naghipour, P.; Schneider, J.; Bartsch, M.; Hausmann, J.; Voggenreiter, H. Fracture Simulation of CFRP Laminates in Mixed Mode Bending. Eng. Fract. Mech. 2009, 76(18), 2821–2833. DOI: 10.1016/j.engfracmech.2009.05.009.
  • Kumar, M.; Kumar, P.; Bhadauria, S. S. Finite Element Modeling of Delamination Growth in Carbon Fiber Reinforced Polymer Laminates. Paper Presented at 1st International Conference on Material Science and Engineering; 2019 June 11–12; Jalandhar, Punjab.
  • Dugdale, D. S.;. Yielding of Steel Sheets Containing Slits. J. Mech. Phys. Solids. 1960, 8(2), 100–104. DOI: 10.1016/0022-5096(60)90013-2.
  • Barenblatt, G. I.;. The Mathematical Theory of Equilibrium Cracks. Adv. Appl. Mech. 1962, 7, 55–129.
  • Borg, R.; Nilsson, L.; Simonsson, K. Simulation of Delamination in Fiber Composites with a Discrete Cohesive Failure Model. Compos. Sci. Technol. 2001, 61(5), 667–677.
  • Alfano, G.;. On the Influence of the Shape of the Interface Law on the Application of Cohesive-Zone Models. Compos. Sci. Technol. 2006, 66(6), 723–730. DOI: 10.1016/j.compscitech.2004.12.024.
  • Zhao, L.; Gong, Y.; Zhang, J.; Wang, Y.; Lu, Z.; Peng, L.; Hu, N. A Novel Interpretation of Fatigue Delamination Growth Behavior in CFRP Multidirectional Laminates. Compos. Sci. Technol. 2016, 133, 79–88. DOI: 10.1016/j.compscitech.2016.07.016.
  • Murri, G. B.; Evaluation of Delamination Growth Characterization Methods under Mode I Fatigue Loading. ASC 27th Technical Conference/15th US-Japan Conference on Composites/ASTM D30 Meeting October 1-3, Arlington, 2012.
  • Argüelles, A.; Viña, J.; Canteli, A. F.; Bonhomme, J. Fatigue Delamination, Initiation, and Growth, under Mode I and II of Fracture in a Carbon-Fiber Epoxy Composite. Polym. Compos. 2009, 700–706. DOI: 10.1002/pc.20855.
  • Atodaria, D. R.; Putatunda, S. K.; Mallick, P. K. Delamination Growth Behavior of a Fabric Reinforced Laminated Composite under Mode I Fatigue. J. Eng. Mater. Technol. 1999, 121(3), 381. DOI: 10.1115/1.2812390.
  • Khan, R.; Alderliesten, R.; Benedictus, R. Two-Parameter Model for Delamination Growth under Mode I Fatigue Loading (Part A: Experimental Study). Compos. Part Appl. Sci. Manuf. 2014, 65, 192–200. DOI: 10.1016/j.compositesa.2014.06.007.
  • Peng, L.; Zhang, J.; Zhao, L.; Bao, R.; Yang, H.; Fei, B. Mode I Delamination Growth of Multidirectional Composite Laminates under Fatigue Loading. J. Compos. Mater. 2011, 45(10), 1077–1090. DOI: 10.1177/0021998310385029.
  • Allegri, G.; Wisnom, M. R. A Non-Linear Damage Evolution Model for Mode II Fatigue Delamination Onset and Growth. Int. J. Fatigue. 2012, 43, 226–234. DOI: 10.1016/j.ijfatigue.2012.03.016.
  • Matsubara, G.; Ono, H.; Tanaka, K. Mode II Fatigue Crack Growth from Delamination in Unidirectional Tape and Satin-Woven Fabric Laminates of High Strength GFRP. Int. J. Fatigue. 2006, 28(10), 1177–1186. DOI: 10.1016/j.ijfatigue.2006.02.006.
  • Sousa, J. A.; Pereira, A. B.; Martins, A. P.; de Morais, A. B. Mode II Fatigue Delamination of Carbon/Epoxy Laminates Using the End-Notched Flexure Test. Compos. Struct. 2015, 134, 506–512. DOI: 10.1016/j.compstruct.2015.08.002.
  • Trethewey, B. R.; Gillespie, J. W.; Carlsson, L. A. Mode II Cyclic Delamination Growth. J. Compos. Mater. 1988, 22(5), 459–483. DOI: 10.1177/002199838802200506.
  • Blanco, N.; Gamstedt, E. K.; Asp, L. E.; Costa, J. Mixed-Mode Delamination Growth in Carbon–Fibre Composite Laminates under Cyclic Loading. Int. J. Solids Struct. 2004, 41(15), 4219–4235. DOI: 10.1016/j.ijsolstr.2004.02.040.
  • Peng, L.; Xu, J.; Zhang, J.; Zhao, L. Mixed Mode Delamination Growth of Multidirectional Composite Laminates under Fatigue Loading. Eng. Fract. Mech. 2012, 96, 676–686. DOI: 10.1016/j.engfracmech.2012.09.033.
  • Zhang, J.; Peng, L.; Zhao, L.; Fei, B. Fatigue Delamination Growth Rates and Thresholds of Composite Laminates under Mixed Mode Loading. Int. J. Fatigue. 2012, 40, 7–15. DOI: 10.1016/j.ijfatigue.2012.01.008.
  • ASTM, 2011, Standard Test Method for Mode I Fatigue Delamination Growth Onset of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International, West Conshohocken, PA, Standard No. ASTM D6115-97(2011).
  • Paris, P.; Erdogan, F. A Critical Analysis of Crack Propagation Laws. J. Basic Eng. 1963, 85(4), 528. DOI: 10.1115/1.3656900.
  • Zhang, W.; Picu, R. C.; Koratkar, N. Suppression of Fatigue Crack Growth in Carbon Nanotube Composites. Appl. Phys. Lett. 2007, 91(19), 193109. DOI: 10.1063/1.2809457.
  • Hojo, M.; Tanaka, K.; Gustafson, C. G. Effect of Stress Ratio on Near-Threshold Propagation of Delamination Fatigue Cracks in Unidirectional CFRP. Composites. 1988, 19(4), 329–330. DOI: 10.1016/0010-4361(88)90035-3.
  • Rans, C.; Alderliesten, R.; Benedictus, R. Misinterpreting the Results: How Similitude Can Improve Our Understanding of Fatigue Delamination Growth. Compos. Sci. Technol. 2011, 71(2), 230–238.
  • Harper, P. W.; Hallett, S. R. A Fatigue Degradation Law for Cohesive Interface Elements – Development and Application to Composite Materials. Int. J. Fatigue. 2010, 32(11), 1774–1787. DOI: 10.1016/j.ijfatigue.2010.04.006.
  • Amiri-Rad, A.; Mashayekhi, M.; van der Meer, F. P.; Hadavinia, H. A Two-Scale Damage Model for High Cycle Fatigue Delamination in Laminated Composites. Compos. Sci. Technol. 2015, 120, 32–38. DOI: 10.1016/j.compscitech.2015.10.010.
  • Turon, A.; Costa, J.; Camanho, P. P.; Dávila, C. G. Simulation of Delamination in Composites under High-Cycle Fatigue. Compos. Part Appl. Sci. Manuf. 2007, 38(11), 2270–2282. DOI: 10.1016/j.compositesa.2006.11.009.
  • Robinson, P.; Galvanetto, U.; Tumino, D.; Bellucci, G.; Violeau, D. Numerical Simulation of Fatigue-Driven Delamination Using Interface Elements. Int. J. Numer. Methods Eng. 2005, 63(13), 1824–1848. DOI: 10.1002/nme.1338.
  • Munoz, J.; Galvanetto, U.; Robinson, P. On the Numerical Simulation of Fatigue Driven Delamination with Interface Elements. Int. J. Fatigue. 2006, 28(10), 1136–1146. DOI: 10.1016/j.ijfatigue.2006.02.003.
  • Nguyen, O.; Repetto, E. A.; Ortiz, M.; Radovitzky, R. A. A Cohesive Model of Fatigue Crack Growth. Int. J. Fatigue. 2001, 110, 351–369.
  • Roe, K. L.; Siegmund, T. An Irreversible Cohesive Zone Model for Interface Fatigue Crack Growth Simulation. Eng. Fract. Mech. 2003, 70(2), 209–232. DOI: 10.1016/S0013-7944(02)00034-6.
  • Tabiei, A.; Zhang, W. Composite Laminate Delamination Simulation and Experiment: A Review of Recent Development. Appl. Mech. Rev. 2018, 70(3), 030801. DOI: 10.1115/1.4040448.
  • Bak, B. L. V.; Sarrado, C.; Turon, A.; Costa, J. Delamination under Fatigue Loads in Composite Laminates: A Review on the Observed Phenomenology and Computational Methods. Appl. Mech. Rev. 2014, 66, 1–24. DOI: 10.1115/1.4027647.
  • Roth, S.; Hütter, G.; Kuna, M. Simulation of Fatigue Crack Growth with a Cyclic Cohesive Zone Model. Int. J. Fract. 2014, 188(1), 23–45. DOI: 10.1007/s10704-014-9942-8.
  • Grimmer, C. S.; Dharan, C. K. H. Enhancement of Delamination Fatigue Resistance in Carbon Nanotube Reinforced Glass Fiber/Polymer Composites. Compos. Sci. Technol. 2010, 70(6), 901–908.
  • Brunner, A. J.; Murphy, N.; Pinter, G. Development of a Standardized Procedure for the Characterization of Interlaminar Delamination Propagation in Advanced Composites under Fatigue Mode I Loading Conditions. Eng. Fract. Mech. 2009, 76, 2678–2689. DOI: 10.1016/j.engfracmech.2009.07.014.
  • Shivakumar, K.; Chen, H.; Abali, F.; Le, D.; Davis, C. A Total Fatigue Life Model for Mode I Delaminated Composite Laminates. Int. J. Fatigue. 2006, 28(1), 33–42. DOI: 10.1016/j.ijfatigue.2005.04.006.
  • Ashcroft, I. A.; Shaw, S. J. Mode I Fracture of Epoxy Bonded Composite Joints 2. Fatigue Loading. Int. J. Adhes. Adhes. 2002, 22(2), 151–167. DOI: 10.1016/S0143-7496(01)00050-1.
  • Wolf, E.;. Fatigue Crack Closure under Cyclic Tension. Eng. Fract. Mech. 1970, 2(1), 37–45. DOI: 10.1016/0013-7944(70)90028-7.
  • Suresh, S.; Ritchie, R. O. A Geometric Model for Fatigue Crack Closure Induced by Fracture Surface Roughness. Metall. Trans. A. 1982, 13(9), 1627–1631. DOI: 10.1007/BF02644803.
  • Raju, I. S.; O’Brien, T. K.; Concepts, F. M.; Fields, S. Strain Energy Release Rates, Delamination Initiation and Growth Criteria, Delamination Behaviour of Composites; Woodhead Publishing Limited, Boca Raton, 2008; pp 3–27.
  • Coronado, P.; Argüelles, A.; Viña, J.; Mollón, V.; Viña, I. Influence of Temperature on a Carbon–Fibre Epoxy Composite Subjected to Static and Fatigue Loading under Mode-I Delamination. Int. J. Solids Struct. 2012, 49(21), 2934–2940. DOI: 10.1016/j.ijsolstr.2012.05.018.
  • Jones, R.; Pitt, S.; Bunner, A. J.; Hui, D. Application of the Hartman–Schijve Equation to Represent Mode I and Mode II Fatigue Delamination Growth in Composites. Compos. Struct. 2012, 94(4), 1343–1351. DOI: 10.1016/j.compstruct.2011.11.030.
  • Jones, R.; Kinloch, A. J.; Hu, W. Cyclic-Fatigue Crack Growth in Composite and Adhesively-Bonded Structures: The FAA Slow Crack Growth Approach to Certification and the Problem of Similitude. Int. J. Fatigue. 2016, 88, 10–18. DOI: 10.1016/j.ijfatigue.2016.03.008.
  • Jones, R.; Hu, W.; Kinloch, A. J. A Convenient Way to Represent Fatigue Crack Growth in Structural Adhesives: Characterising Fatigue Crack Growth in Structural Adhesives. Fatigue Fract. Eng. Mater. Struct. 2015, 38, 379–391. DOI: 10.1111/ffe.12241.
  • Khan, R.; Alderliesten, R.; Badshah, S.; Benedictus, R. Effect of Stress Ratio or Mean Stress on Fatigue Delamination Growth in Composites: Critical Review. Compos. Struct. 2015, 124, 214–227. DOI: 10.1016/j.compstruct.2015.01.016.
  • Mall, S.; Ramamurthy, G.; Rezaizdeh, M. A. Stress Ratio Effect on Cyclic Debonding in Adhesively Bonded Composite Joints. Compos. Struct. 1987, 8(1), 31–45. DOI: 10.1016/0263-8223(87)90014-6.
  • Roundi, W.; El Mahi, A.; El Gharad, A.; Rebière, J.-L. Experimental and Numerical Investigation of the Effects of Stacking Sequence and Stress Ratio on Fatigue Damage of Glass/Epoxy Composites. Compos. Part B Eng. 2017, 109, 64–71. DOI: 10.1016/j.compositesb.2016.10.044.
  • Sembokuya, H.; Hojo, M.; Nagasawa, C.; Aoki, T.; Kemmochi, K.; Maki, H. Effect of Stress Ratio on Tension and Delamination Fatigue Behavior in CF/Epoxy Laminates. Adv. Compos. Mater. 1991, 1(4), 261–275. DOI: 10.1163/156855191X00153.
  • Andersons, J.;. Empirical Model for Stress Ratio Effect on Fatigue Delamination Growth Rate in Composite Laminates. Int. J. Fatigue. 2004, 26(6), 597–604. DOI: 10.1016/j.ijfatigue.2003.10.016.
  • Nakai, Y.;. Effects of Loading Frequency and Environment on Delamination Fatigue Crack Growth of CFRP. Int. J. Fatigue. 2002, 24(2–4), 161–170. DOI: 10.1016/S0142-1123(01)00069-X.
  • Yao, L.; Alderliesten, R.; Zhao, M.; Benedictus, R. Bridging Effect on Mode I Fatigue Delamination Behavior in Composite Laminates. Compos. Part Appl. Sci. Manuf. 2014, 63, 103–109. DOI: 10.1016/j.compositesa.2014.04.007.
  • Yao, L.; Alderliesten, R. C.; Zhao, M.; Benedictus, R. Discussion on the Use of the Strain Energy Release Rate for Fatigue Delamination Characterization. Compos. Part Appl. Sci. Manuf. 2014, 66, 65–72. DOI: 10.1016/j.compositesa.2014.06.018.
  • Chen, H.; Shivakumar, K.; Abali, F. A Comparison of Total Fatigue Life Models for Composite Laminates: Total Fatigue Life Models for Composite Laminates. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 31–39. DOI: 10.1111/j.1460-2695.2006.00958.x.
  • Pascoe, J. A.; Alderliesten, R. C.; Benedictus, R. Methods for the Prediction of Fatigue Delamination Growth in Composites and Adhesive Bonds – A Critical Review. Eng. Fract. Mech. 2013, 112–113, 72–96. DOI: 10.1016/j.engfracmech.2013.10.003.
  • ASTM, 2011, Measurement of Fatigue Crack Growth Rates. Standard No. ASTM E647 – 11, ASTM International, West Conshohocken, PA.
  • Murri, G. B.;. Effect of Data Reduction and Fiber-Bridging on Mode I Delamination Characterization of Unidirectional Composites. J. Compos. Mater. 2014, 48(19), 2413–2424. DOI: 10.1177/0021998313498791.
  • Stelzer, S.; Brunner, A. J.; Argüelles, A.; Murphy, N.; Pinter, G. Mode I Delamination Fatigue Crack Growth in Unidirectional Fiber Reinforced Composites: Development of a Standardized Test Procedure. Compos. Sci. Technol. 2012, 72(10), 1102–1107. DOI: 10.1016/j.compscitech.2011.11.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.