641
Views
20
CrossRef citations to date
0
Altmetric
Articles

Sustainable conducting polymer composites: study of mechanical and tribological properties of natural fiber reinforced PVA composites with carbon nanofillers

, , , ORCID Icon & ORCID Icon
Pages 1088-1099 | Received 30 Oct 2019, Accepted 17 Jan 2020, Published online: 24 Jan 2020

References

  • Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q. Progress on the Morphological Control of Conductive Network in Conductive Polymer Composites and the Use as Electroactive Multifunctional Materials. Prog. Polym. Sci. 2014, 39(4), 627–655. DOI: 10.1016/j.progpolymsci.2013.07.007.
  • Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-Based Polymer Nanocomposites. Polymer (Guildf). 2011, 52(1), 5–25. DOI: 10.1016/j.polymer.2010.11.042.
  • Park, K.; Lee, S.; Kim, C.; Han, J. Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures. Compos. Sci. Technol. 2006, 66(3–4), 576–584. DOI: 10.1016/j.compscitech.2005.05.034.
  • Plyushch, A.; Macutkevic, J.; Kuzhir, P.; Banys, J.; Bychanok, D.; Lambin, P.; Bistarelli, S.; Cataldo, A.; Micciulla, F.; Bellucci, S. Electromagnetic Properties of Graphene Nanoplatelets/Epoxy Composites. Compos. Sci. Technol. 2016, 128, 75–83. DOI: 10.1016/j.compscitech.2016.03.023.
  • Lin, J.-H.; Lin, Z.; Pan, Y.; Huang, C.; Chen, C.; Lou, C. Polymer Composites Made of Multi-Walled Carbon Nanotubes and Graphene Nano-Sheets: Effects of Sandwich Structures on Their Electromagnetic Interference Shielding Effectiveness. Compos. Part B Eng. 2016, 89, 424–431. DOI: 10.1016/j.compositesb.2015.11.014.
  • Danlée, Y.; Bailly, C.; Huynen, I. Thin and Flexible Multilayer Polymer Composite Structures for Effective Control of Microwave Electromagnetic Absorption. Compos. Sci. Technol. 2014, 100, 182–188. DOI: 10.1016/j.compscitech.2014.06.010.
  • Abdullah, Z. W.; Dong, Y.; Davies, I. J.; Barbhuiya, S. PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application. Polym. Plast. Technol. Eng. 2017, 56(12), 1307–1344. DOI: 10.1080/03602559.2016.1275684.
  • Mallakpour, S.; Khadem, E. Recent Achievements in the Synthesis of Biosafe Poly(Vinyl Alcohol) Nanocomposite. In Green Polymer Composites Technology Properties and Applications; Inamuddin; Ed.; CRC Press: Boca Raton, 2017; pp 261–288.
  • Chiellini, E.; Corti, A.; D’Antone, S.; Solaro, R. Biodegrad. Poly (Vinyl Alcohol) Based Mater. 2003, 28. DOI: 10.1016/S0079-6700(02)00149-1.
  • Mo, S.; Peng, L.; Yuan, C.; Zhao, C.; Tang, W.; Ma, C.; Shen, J.; Yang, W.; Yu, Y.; Min, Y.;, et al. Enhanced Properties of Poly(Vinyl Alcohol) Composite Films with Functionalized Graphene. RSC Adv. 2015, 5(118), 97738–97745. DOI: 10.1039/C5RA15984A.
  • Marka, S. K.; Sindam, B.; James Raju, K. C.; Srikanth, V. V. S. S. Flexible Few-Layered Graphene/Poly Vinyl Alcohol Composite Sheets: Synthesis, Characterization and EMI Shielding in X-Band through the Absorption Mechanism. RSC Adv. 2015, 5(46), 36498–36506. DOI: 10.1039/C5RA04038H.
  • Joshi, A.; Bajaj, A.; Singh, R.; Alegaonkar, P. S.; Balasubramanian, K.; Datar, S. Corrigendum: Graphene Nanoribbon–PVA Composite as EMI Shielding Material in the X Band (2013 Nanotechnology 24 455705). Nanotechnology. 2014, 25(23), 239501. DOI: 10.1088/0957-4484/25/23/239501.
  • Prolongo, S. G.; Moriche, R.; Ureña, A.; Flórez, S.; Gaztelumendi, I.; Arribas, C.; Prolongo, M. G. Carbon Nanotubes and Graphene into Thermosetting Composites: Synergy and Combined Effect. J. Appl. Polym. Sci. 2018, 135(28), 46475. DOI: 10.1002/app.46475.
  • Joseph, J.; Munda, P. R.; John, D. A.; Sidpara, A. M.; Paul, J. Graphene and CNT Filled Hybrid Thermoplastic Composites for Enhanced EMI Shielding Effectiveness. Mater. Res. Express Pap. 2019, 6, 85617. DOI: 10.1088/2053-1591/able23.
  • Liu, H.; Gao, J.; Huang, W.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers. Nanoscale. 2016, 8(26), 12977–12989. DOI: 10.1039/C6NR02216B.
  • Li, Y.; Zhang, D.; Wang, S.; Zhan, Y.; Yin, J.; Tao, X.; Ge, X.; Tjong, S. C.; Liu, H. Y.; Mai, Y. W. Fe3O4 Decorated Graphene/Poly(Vinylidene Fluoride) Nanocomposites with High Dielectric Constant and Low Dielectric Loss. Compos. Sci. Technol. 2019, 171(December 2018), 152–161. DOI: 10.1016/j.compscitech.2018.12.022.
  • Zhou, E.; Xi, J.; Guo, Y.; Liu, Y.; Xu, Z.; Peng, L.; Gao, W.; Ying, J.; Chen, Z.; Gao, C. Synergistic Effect of Graphene and Carbon Nanotube for High-Performance Electromagnetic Interference Shielding Films. Carbon N. Y. 2018, 133, 316–322. DOI: 10.1016/j.carbon.2018.03.023.
  • Lin, J.-H.; Lin, Z.-I.; Pan, Y.-J.; Chen, C.-K.; Huang, C.-L.; Huang, C.-H.; Lou, C.-W. Improvement in Mechanical Properties and Electromagnetic Interference Shielding Effectiveness of PVA-Based Composites: Synergistic Effect between Graphene Nano-Sheets and Multi-Walled Carbon Nanotubes. Macromol. Mater. Eng. 2016, 301(2), 199–211. DOI: 10.1002/mame.201500314.
  • Joseph, J.; Vijay, P.; Sidpara, A.; Paul, J. Poly (Vinyl Alcohol)/Multilayer Graphene Composite Structures via Additional Manufacturing Route for Effective EMI Shielding Solutions : Study of Mechanical, Thermal and Electrical Properties. In ECCM18-18th European Conference on composite materials, Athens, Greece, 2018; pp 24–28.
  • Faruk, O.; Bledzki, A. K.; Fink, H. P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012, 37(11), 1552–1596. DOI: 10.1016/j.progpolymsci.2012.04.003.
  • Singha, A. S.; Thakur, V. K. Chemical Resistance, Mechanical and Physical Properties of Biofibers -based Polymer Composites. Polym. Plast. Technol. Eng. 2009, 48(7), 736–744. DOI: 10.1080/03602550902824622.
  • Alam, M. M.; Ahmed, T.; Haque, M. M.; Gafur, M. A.; Kabir, A. N. M. H. Mechanical Properties of Natural Fiber Containing Polymer Composites. Polym. Plast. Technol. Eng. 2008, 48(1), 110–113. DOI: 10.1080/03602550802539932.
  • Balla, V. K.; Kate, K. H.; Satyavolu, J.; Singh, P.; Tadimeti, J. G. D. Additive Manufacturing of Natural Fiber Reinforced Polymer Composites: Processing and Prospects. Compos. Part B Eng. 2019, 174(March), 106956. DOI: 10.1016/j.compositesb.2019.106956.
  • Bhatia, J. K.; Kaith, B. S.; Kalia, S. 2016. Recent Developments in Surface Modification of Natural Fibers for Their Use in Biocomposites. In Biodegradable Green Composites, Kalia, S., Ed.; John Wiley & Sons, Inc; pp 80–117. DOI:10.1002/9781118911068.ch4.
  • Fuqua, M. A.; Huo, S.; Ulven, C. A. Natural Fiber Reinforced Composites. Polym. Rev. 2012, 52(3), 259–320. DOI: 10.1080/15583724.2012.705409.
  • Kabir, M. M.; Wang, H.; Lau, K. T.; Cardona, F. Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview. Compos. Part B Eng. 2012, 43(7), 2883–2892. DOI: 10.1016/j.compositesb.2012.04.053.
  • Li, X.; Tabil, L. G.; Panigrahi, S. Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review. J. Polym. Environ. 2007, 15(1), 25–33. DOI: 10.1007/s10924-006-0042-3.
  • Modibbo, U. U.; Aliyu, B. A.; Nkafamiya, I. I. The Effect of Mercerization Media on the Physical Properties of Local Plant Bast Fibres. Int. J. Phys. Sci. 2009, 4(11), 698–704.
  • Valadez-Gonzalez, A.; Cervantes-Uc, J. M.; Olayo, R.; Herrera-Franco, P. J. Effect of Fiber Surface Treatment on the Fiber-Matrix Bond Strength of Natural Fiber Reinforced Composites. Compos. Part B Eng. 1999, 30(3), 309–320. DOI: 10.1016/S1359-8368(98)00054-7.
  • Patel, B.; Acharya, S.; Mishra, D. Environmental Effect of Water Absorption and Flexural Strength of Red Mud Filled Jute Fiber/Polymer Composite. Int. J. Eng. Sci. Technol. 2013, 4(4), 49–59. DOI: 10.4314/ijest.v4i4.5.
  • Nam, T. H.; Ogihara, S.; Tung, N. H.; Kobayashi, S. Effect of Alkali Treatment on Interfacial and Mechanical Properties of Coir Fiber Reinforced Poly(Butylene Succinate) Biodegradable Composites. Compos. Part B Eng. 2011, 42(6), 1648–1656. DOI: 10.1016/j.compositesb.2011.04.001.
  • Hossain, M. K.; Dewan, M. W.; Hosur, M.; Jeelani, S. Mechanical Performances of Surface Modified Jute Fiber Reinforced Biopol Nanophased Green Composites. Compos. Part B Eng. 2011, 42(6), 1701–1707. DOI: 10.1016/j.compositesb.2011.03.010.
  • Fiore, V.; Di Bella, G.; Valenza, A. The Effect of Alkaline Treatment on Mechanical Properties of Kenaf Fibers and Their Epoxy Composites. Compos. Part B Eng. 2015, 68, 14–21. DOI: 10.1016/j.compositesb.2014.08.025.
  • Acharya, S. K.; Mishra, P.; Mehar, S. K. Effect of Surface Treatment on the Mechanical Properties of Bagasse Fiber Reinforced Polymer Composite. BioResources 2011, 6(3), 3155–3165.
  • Goriparthi, B. K.; Suman, K. N. S.; Mohan Rao, N. Effect of Fiber Surface Treatments on Mechanical and Abrasive Wear Performance of Polylactide/Jute Composites. Compos. Part A Appl. Sci. Manuf. 2012, 43(10), 1800–1808. DOI: 10.1016/j.compositesa.2012.05.007.
  • Erdoğan, U. H.; Seki, Y.; Aydoğdu, G.; Kutlu, B.; Akşit, A. Effect of Different Surface Treatments on the Properties of Jute. J. Nat. Fibers. 2016, 13(2), 158–171. DOI: 10.1080/15440478.2014.1002149.
  • Khan, R. A.; Sharmin, N.; Khan, M. A.; Das, A. K.; Dey, K.; Saha, S.; Islam, T.; Islam, R.; Nigar, F.; Sarker, B.;, et al. Comparative Studies of Mechanical and Interfacial Properties between Jute Fiber/PVC and E-Glass Fiber/PVC Composites. Polym. Plast. Technol. Eng. 2011, 50(2), 153–159. DOI: 10.1080/03602559.2010.531422.
  • Karmaker, A. C.; Hinrichsen, G. Processing and Characterization of Jute Fiber Reinforced Thermoplastic Polymers. Polym. Plast. Technol. Eng. 1991, 30(5–6), 609–629. DOI: 10.1080/03602559108019223.
  • Tan, B.; Ching, Y.; Poh, S.; Abdullah, L.; Gan, S. A Review of Natural Fiber Reinforced Poly(Vinyl Alcohol) Based Composites: Application and Opportunity. Polymers (Basel) 2015, 7(11), 2205–2222. DOI:10.3390/polym7111509.
  • Baheti, V.; Militky, J. Reinforcement of Wet Milled Jute Nano/Micro Particles in Polyvinyl Alcohol Films. Fibers Polym. 2013, 14(1), 133–137. DOI: 10.1007/s12221-013-0133-4.
  • Das, K.; Ray, D.; Bandyopadhyay, N. R.; Sahoo, S.; Mohanty, A. K.; Misra, M. Physico-Mechanical Properties of the Jute Micro/Nanofibril Reinforced Starch/Polyvinyl Alcohol Biocomposite Films. Compos. Part B Eng. 2011, 42(3), 376–381. DOI: 10.1016/j.compositesb.2010.12.017.
  • Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S., et al. Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 2006, 97(18), 1–4. DOI: 10.1103/PhysRevLett.97.187401.
  • Additives, P.;. Modifying Conductivity in Plastics. Plast. Addit. Compd. 2004, 6(1), 40–43. DOI: 10.1016/S1464-391X(04)00104-7.
  • Joseph, J.; Koroth, A. K.; John, D. A.; Sidpara, A. M.; Paul, J. Highly Filled Multilayer Thermoplastic/Graphene Conducting Composite Structures with High Strength and Thermal Stability for Electromagnetic Interference Shielding Applications. J. Appl. Polym. Sci. 2019, 136(29), 47792. DOI: 10.1002/app.47792.
  • Mohanty, S.; Verma, S. K.; Nayak, S. K. Dynamic Mechanical and Thermal Properties of MAPE Treated Jute/HDPE Composites. Compos. Sci. Technol. 2006, 66(3–4), 538–547. DOI: 10.1016/j.compscitech.2005.06.014.
  • Pothan, L. A.; Oommen, Z.; Thomas, S. Dynamic Mechanical Analysis of Banana Fiber Reinforced Polyester Composites. Compos. Sci. Technol. 2003, 63(2), 283–293. DOI: 10.1016/S0266-3538(02)00254-3.
  • Chand, N.; Fahim, M. Introduction to Tribology of Polymer Composites. In Tribology of Natural Fiber Polymer Composites; Woodhead Publishing: 2008; pp 59–83. DOI:10.1533/9781845695057.59.
  • Nirmal, U.; Hashim, J.; Megat Ahmad, M. M. H. A Review on Tribological Performance of Natural Fibre Polymeric Composites. Tribol. Int. 2015, 83, 77–104. DOI: 10.1016/j.triboint.2014.11.003.
  • Shalwan, A.; Yousif, B. F. In State of Art: Mechanical and Tribological Behaviour of Polymeric Composites Based on Natural Fibres. Mater. Des. 2013, 48, 14–24. DOI: 10.1016/j.matdes.2012.07.014.
  • Omrani, E.; Menezes, P. L.; Rohatgi, P. K. State of the Art on Tribological Behavior of Polymer Matrix Composites Reinforced with Natural Fibers in the Green Materials World. Eng. Sci. Technol. Int. J. 2016, 19(2), 717–736. DOI:10.1016/j.jestch.2015.10.007.
  • Pesetskii, S. S.; Bogdanovich, S. P.; Myshkin, N. K. Polymer Nanocomposites with Thermoplastic Matrices—Processing and Tribology. J. Macromol. Sci. Part B. 2013, 52(12), 1784–1810. DOI: 10.1080/00222348.2013.808560.
  • Bajpai, P. K.; Singh, I.; Madaan, J. Tribological Behavior of Natural Fiber Reinforced PLA Composites. Wear. 2013, 297(1–2), 829–840. DOI: 10.1016/j.wear.2012.10.019.
  • Miah, M. J.; Ahmed, F.; Hossain, A.; Khan, A. H.; Khan, M. Study on Mechanical and Dielectric Properties of Jute Fiber Reinforced Low-Density Polyethylene (LDPE) Composites. Polym. Plast. Technol. Eng. 2005, 44(8–9), 1443–1456. DOI: 10.1081/200048718.
  • Wang, H.; Xie, G.; Zhu, Z.; Ying, Z.; Zeng, Y. Enhanced Tribological Performance of the Multi-Layer Graphene Filled Poly(Vinyl Chloride) Composites. Compos. Part A Appl. Sci. Manuf. 2014, 67, 268–273. DOI: 10.1016/j.compositesa.2014.09.011.
  • Chih, A.; Ansón-Casaos, A.; Puértolas, J. A. Frictional and Mechanical Behaviour of Graphene/UHMWPE Composite Coatings. Tribol. Int. 2017, 116(May), 295–302. DOI: 10.1016/j.triboint.2017.07.027.
  • Khun, N. W.; Zhang, H.; Lim, L. H.; Yang, J. Mechanical and Tribological Properties of Graphene Modified Epoxy Composites. KMUTNB Int. J. Appl. Sci. Technol. 2015, 8(2), 101–109.
  • Dong, B.; Wang, C.; He, B. L.; Li, H. L. Preparation and Tribological Properties of Poly (Methyl Methacrylate)/Styrene/MWNTs Copolymer Nanocomposites. J. Appl. Polym. Sci. 2008, 108, 1675–1679. DOI: 10.1002/app.
  • Shen, X.-J.; Pei, X.-Q.; Liu, Y.; Fu, S.-Y. Tribological Performance of Carbon Nanotube–Graphene Oxide Hybrid/Epoxy Composites. Compos. Part B Eng. 2014, 57, 120–125. DOI: 10.1016/j.compositesb.2013.09.050.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.