170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and working mechanism of fluid loss additive by freeze-drying method

, , , &
Pages 1417-1428 | Received 24 Sep 2019, Accepted 14 Mar 2020, Published online: 24 Mar 2020

References

  • Hu, W.; Bao, J.; Hu, B. Trend and Progress in Global Oil and Gas Exploration. Petrol. Explor. Dev. 2013, 40, 439–443. DOI: 10.1016/s1876-3804(13)60055-5.
  • Robert, B.;. The Integrity of Oil and Gas Wells. P. Natl. Acad. Sci. 2014, 111, 10902–10903. DOI: 10.1073/pnas.1410786111.
  • Zhang, G.; Zhu, N.; Zhu, X. Influence of Polycarboxylate Dispersants with Different Molecular Structures on the Performance of Coal Water Slurry. J. Disper. Sci. Technol. 2016, 37, 1799–1805. DOI: 10.1080/01932691.2016.1140585.
  • Xu, Y.; Guo, J.; Chen, D.; Cao, L.; Dong, M. Synthesis and Thermothickening Behavior of Graft Copolymers Based on Poly (N,n-diethylacrylamide-co-n,n-dimethylacrylamide) Side Chains. Polym-Plast Technol. Eng. 2018, 57, 1265–1276. DOI: 10.1080/03602559.2017.1381241.
  • Chen, D.; Guo, J.; Xu, Y.; Hu, M.; Li, P.; Jin, J.; Yu, Y. Adsorption Behavior and Mechanism of a Copolymer Used as Fluid Loss Additive in Oil Well Cement. Constr Build. Mater. 2019, 198, 650–661. DOI: 10.1016/j.conbuildmat.2018.11.184.
  • Xia, X.; Feng, Y.; Guo, J.; Liu, S.; Jin, J.; Yu, Y. Zwitterionic Copolymer for Controlling Fluid Loss in Oilwell Cementing: Preparation, Characterization, and Working Mechanism. Polym. Eng. Sci. 2017, 57, 78–88. DOI: 10.1002/pen.24387.
  • Fink, J.;. Petroleum Engineer’s Guide to Oil Field Chemicals and Fluids; Gulf Professional Publishing, 2012; pp 61–123.
  • Li, J.; Yang, P.; Peng, Y.; Guan, J.; Sun, Y.; Kuang, X.; Chen, S. A New Type of Whole Oil-based Drilling Fluid. Petrol. Explor. Dev. 2014, 41, 538–544. DOI: 10.1016/S1876-3804(14)60064-1.
  • Bülichen, D.; Plank, J. Role of Colloidal Polymer Associates for the Effectiveness of Hydroxyethyl Cellulose as a Fluid Loss Control Additive in Oil Well Cement. J. Appl. Polym. Sci. 2012, 126, E25–E34. DOI: 10.1002/app.36529.
  • Bülichen, D.; Plank, J. Mechanistic Study on Carboxymethyl Hydroxyethyl Cellulose as Fluid Loss Control Additive in Oil Well Cement. J. Appl. Polym. Sci. 2012, 124, 2340–2347. DOI: 10.1002/app.35278.
  • Li, M.; Wu, Q.; Song, K.; Qing, Y.; Wu, Y. Cellulose Nanoparticles as Modifiers for Rheology and Fluid Loss in Bentonite Water-based Fluids. ACS Appl. Mater. Inter. 2015, 7, 5006–5016. DOI: 10.1021/acsami.5b00498.
  • Aramendiz, J.; Imqam, A. Water-based Drilling Fluid Formulation Using Silica and Graphene Nanoparticles for Unconventional Shale Applications. J. Petrol. Sci. Eng. 2019, 179, 742–749. DOI: 10.1016/j.petrol.2019.04.085.
  • Barati, R.;. Application of Nanoparticles as Fluid Loss Control Additives for Hydraulic Fracturing of Tight and Ultra-tight Hydrocarbon-bearing Formations. J. Nat. Gas. Sci. Eng. 2015, 27, 1321–1327. DOI: 10.1016/j.jngse.2015.03.028.
  • Sadeghalvaad, M.; Sabbaghi, S. The Effect of the TiO2/polyacrylamide Nanocomposite on Water-based Drilling Fluid Properties. Powder Technol. 2015, 272, 113–119. DOI: 10.1016/j.powtec.2014.11.032.
  • Cui, W.; Jiang, G.; He, Y. New Structure Found in a Filter Cake with the Addition of an Amphoteric Polymer Fluid Loss Additive. J. Appl. Polym. Sci. 2019, 136, 47965. DOI: 10.1002/app.47965.
  • Huang, Y.; Zhang, D.; Zheng, W. Synthetic Copolymer (AM/AMPS/DMDAAC/SSS) as Rheology Modifier and Fluid Loss Additive at HTHP for Water-based Drilling Fluids. J. Appl. Polym. Sci. 2019, 136, 47813. DOI: 10.1002/app.47813.
  • Xiao, Q.; Rao, P.; Xiao, W.; Liu, X.; Zhang, W. Preparation of a Novel Forpolymer as Fluid Loss Additive for High Temperature Oil Well Cementing. Russ. J. Appl. Chem. 2014, 87, 1377–1381. DOI: 10.1134/S1070427214090328.
  • Zhao, Z.; Pu, X.; Xiao, L.; Wang, G.; Su, J.; He, M. Synthesis and Properties of High Temperature Resistant and Salt Tolerant Filtrate Reducer N, N-dimethylacrylamide 2-acrylamido-2-methyl-1-propyl Dimethyl Diallyl Ammonium Chloride N-vinylpyrrolidone Quadripolymer. J. Polym. Eng. 2015, 35, 627–635. DOI: 10.1515/polyeng-2014-0260.
  • Vralstad, T.; Saasen, A.; Fjaer, E.; Oia, T.; Ytrehus, J.; Khalifeh, M. Plug & Abandonment of Offshore Wells: Ensuring Long-term Well Integrity and Cost-efficiency. J. Petrol. Sci. Eng. 2019, 173, 478–491. DOI: 10.1016/j.petrol.2018.10.049.
  • Collette, C.; Lafuma, F.; Audebert, R.; Brouard, R. Macromolecular Systems in Heat‐resistant Drilling Fluids; Advantages of Gels on Linear Polymers. J. Appl. Polym. Sci. 1994, 53, 755–762. DOI: 10.1002/app.1994.070530605.
  • Ran, Q.; Qiao, M.; Liu, J. Influence of Ca2+ on the Performance of Poly (Acrylic Acid)-g-poly (Ethylene Glycol) Comb-like Copolymers in Cement Suspensions. Iran. Polym. J. 2014, 23, 663–669. DOI: 10.1007/s13726-014-0259-2.
  • Wan, T.; Yao, J.; Zishun, S.; Li, W.; Juan, W. Solution and Drilling Fluid Properties of Water Soluble AM–AA–SSS Copolymers by Inverse Microemulsion. J. Petrol. Sci. Eng. 2011, 78, 334–337. DOI: 10.1016/j.petrol.2011.06.027.
  • Cao, L.; Guo, J.; Tian, J.; Xu, Y.; Hu, M.; Guo, C.; Wang, M.; Fan, J. Synthesis, Characterization and Working Mechanism of a Novel Sustained-release-type Fluid Loss Additive for Seawater Cement Slurry. J. Colloid. Interf. Sci. 2018, 524, 434–444. DOI: 10.1016/j.jcis.2018.03.079.
  • Zhang, L.; Liao, L.; Qiao, Y.; Wang, C.; Shi, D.; An, K.; Hu, J. Effects of Ultrahigh Pressure and Ultrasound Pretreatments on Properties of Strawberry Chips Prepared by Vacuum-freeze Drying. Food Chem. 2019, 303, 125386. DOI: 10.1016/j.foodchem.2019.125386.
  • Simoes, M.; Hugo, A.; Alves, P.; Perez, P.; Gomez, Z.; Simoes, P. Long Term Stability and Interaction with Epithelial Cells of Freeze-dried pH-responsive Liposomes Functionalized with Cholesterol-poly (Acrylic Acid). Colloids Surf. B Biointerfaces. 2018, 164, 50–57. DOI: 10.1016/j.colsurfb.2018.01.018.
  • Wu, H.; Sun, C.; Liu, N. Effects of Different Cryoprotectants on Microemulsion Freeze-drying. Innov. Food. Sci. Emerg. 2019, 54, 28–33. DOI: 10.1016/j.ifset.2018.12.007.
  • Schaffazick, S.; Pohlmann, A.; Dalla-Costa, T.; Guterres, S. Freeze-drying Polymeric Colloidal Suspensions: Nanocapsules, Nanospheres and Nanodispersion. A Comparative Study. Eur. J. Pharm. Biopharm. 2003, 56, 501–505. DOI: 10.1016/S0939-6411(03)00139-5.
  • Yang, H.; Sugita, N.; Nakane, K. Factors Influencing the PVA Polymer-assisted Freeze-drying Synthesis of Al2O3 Nanofibers. Ceram. Int. 2019, 45, 16731–16739. DOI: 10.1016/j.ceramint.2019.05.190.
  • Horgnies, M.;. Polymeric Microstructures Induced by Freeze-drying Process: Comparative Study of PS41–PAA271 Morphologies after Impregnations in Water and in an Alkaline Solution. J. Mater. Process. Tech. 2009, 209, 5481–5486. DOI: 10.1016/j.jmatprotec.2009.05.002.
  • Yamada, K.; Ogawa, S.; Hanehara, S. Controlling of the Adsorption and Dispersing Force of Polycarboxylate-type Superplasticizer by Sulfate Ion Concentration in Aqueous Phase. Cem. Concr. Res. 2001, 31, 375–383. DOI: 10.1016/S0008-8846(00)00503-2.
  • Plank, J.; Pöllmann, K.; Zouaoui, N.; Andres, P.; Schaefer, C. Synthesis and Performance of Methacrylic Ester Based Polycarboxylate Superplasticizers Possessing Hydroxy Terminated Poly(ethylene Glycol) Side Chains. Cem. Concr. Res. 2008, 38, 1210–1216. DOI: 10.1016/j.cemconres.2008.01.007.
  • Xu, Y.; Guo, J.; Chen, D.; Hu, M.; Li, P.; Yu, Y.; Zhang, H. Effects of Amphoteric Polycarboxylate Dispersant (APC) and Acetone Formaldehyde Sulfite Polycondensate (AFS) on the Rheological Behavior and Model of Oil Well Cement Pastes. Colloid Surf. A Physicochem. Eng. Asp. 2019, 569, 35–42. DOI: 10.1016/j.colsurfa.2019.02.055.
  • Li, D.; Wang, D.; Ren, C.; Rui, Y. Investigation of Rheological Properties of Fresh Cement Paste Containing Ultrafine Circulating Fluidized Bed Fly Ash. Constr. Build. Mater. 2018, 188, 1007–1013. DOI: 10.1016/j.conbuildmat.2018.07.186.
  • Bellotto, M.;. Cement Paste Prior to Setting: A Rheological Approach. Cem. Concr. Res. 2013, 52, 161–168. DOI: 10.1016/j.cemconres.2013.07.002.
  • Patel, J.; Zhao, C.; Deshmukh, S.; Zou, G.; Wamuo, O.; Hsu, S.; Schoch, A.; Carleen, S.; Matsumoto, D. An Analysis of the Role of Reactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. Polymer. 2016, 107, 12–18. DOI: 10.1016/j.polymer.2016.11.005.
  • Patel, J.; Xiang, Z.; Hsu, S.; Schoch, A.; Carleen, S.; Matsumoto, D. Characterization of the Crosslinking Reaction in High Performance Adhesives. Int. J. Adhes. Adhes. 2017, 78, 256–262. DOI: 10.1016/j.ijadhadh.2017.08.006.
  • Patel, J.; Xiang, Z.; Hsu, S.; Schoch, A.; Carleen, S.; Matsumoto, D. Path to Achieving Molecular Dispersion in a Dense Reactive Mixture. J. Polym. Sci., Part B: Polym. Phys. 2015, 53, 1519–1526. DOI: 10.1002/polb.23789.
  • Patel, J.; Deshmukh, S.; Zhao, C.; Wamuo, O.; Hsu, S.; Schoch, A.; Carleen, S.; Matsumoto, D. An Analysis of the Role of Nonreactive Plasticizers in the Crosslinking Reactions of a Rigid Resin. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 206–213. DOI: 10.1002/polb.24261.
  • Plank, J.; Hirsch, C. Impact of Zeta Potential of Early Cement Hydration Phases on Superplasticizer Adsorption. Cem. Concr. Res. 2007, 37, 537–542. DOI: 10.1016/j.cemconres.2007.01.007.
  • Wu, Y.; Zhang, B.; Wu, T.; Zhang, C. Properties of the Forpolymer of N -vinylpyrrolidone with Itaconic Acid, Acrylamide and 2-acrylamido-2-methyl-1-propane Sulfonic Acid as a Fluid-loss Reducer for Drilling Fluid at High Temperatures. Colloid Polym. Sci. 2001, 279, 836–842. DOI: 10.1007/s003960100494.
  • Liu, X.; Wang, Y.; Lu, Z.; Chen, Q.; Feng, Y. Effect of Inorganic Salts on Viscosifying Behavior of a Thermoassociative Water‐soluble Terpolymer Based on 2‐acrylamido‐methylpropane Sulfonic Acid. J. Appl. Polym. Sci. 2012, 125, 4041–4048. DOI: 10.1002/app.36745.
  • Cao, L.; Guo, J.; Tian, J.; Xu, Y.; Hu, M.; Wang, M.; Fan, J. Preparation of Ca/Al-Layered Double Hydroxide and the Influence of Their Structure on Early Strength of Cement. Constr. Build. Mater. 2018, 184, 203–214. DOI: 10.1016/j.conbuildmat.2018.06.186.
  • Danielczak, B.; Meister, A.; Keller, S. Influence of Mg2+ and Ca2+ on Nanodisc Formation by Diisobutylene/maleic Acid (DIBMA) Copolymer. Chem. Phys. Lipids. 2019, 221, 30–38. DOI: 10.1016/j.chemphyslip.2019.03.004.
  • Carpenter, J.; Prestrelski, S.; Anchordoguy, T.; Arakawa, T., Interactions of Stabilizers with Proteins during Freezing and Drying, In: Formulation and Delivery of Proteins and Peptides; American Chemical Society, 1994; pp. 134–147. Chapter 9. DOI: 10.1021/bk-1994-0567.ch009.
  • Grasmeijer, N.; Stankovic, M.; Waard, H.; Frijlink, H.; Hinrichs, W. Unraveling Protein Stabilization Mechanisms: Vitrification and Water Replacement in a Glass Transition Temperature Controlled System. Biochim. Biophys. Acta Proteins Proteom. 2013, 1834, 763–769. DOI: 10.1016/j.bbapap.2013.01.020.
  • Ran, Q.; Somasundaran, P.; Miao, C.; Liu, J.; Wu, S.; Shen, J. Adsorption Mechanism of Comb Polymer Dispersants at the Cement/Water Interface. J. Disper. Sci. Technol. 2010, 31, 790–798. DOI: 10.1080/01932690903333580.
  • Plank, J.; Brandl, A.; Zhai, Y.; Franke, A. Adsorption Behavior and Effectiveness of poly(N, N-dimethylacrylamide- Co -ca 2-acrylamido-2-methylpropanesulfonate) as Cement Fluid Loss Additive in the Presence of Acetone-formaldehyde-sulfite Dispersant. J. Appl. Polym. Sci. 2006, 102, 4341–4347. DOI: 10.1002/app.24921.
  • Salami, O.; Plank, J. Influence of Electrolytes on the Performance of a Graft Copolymer Used as Fluid Loss Additive in Oil Well Cement. J. Petrol. Sci. Eng. 2014, 143, 86–94. DOI: 10.1016/j.petrol.2016.02.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.