291
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Synthesis and characterization of functionalized MWCNTs/PMMA composites: device fabrication for RH sensing

, , , , &
Pages 1608-1620 | Received 31 Dec 2019, Accepted 20 Apr 2020, Published online: 08 Jun 2020

References

  • Yang, H.; Ye, Q.; Zeng, R.; Zhang, J.; Yue, L.; Xu, M.; Qiu, Z.; Wu, D. Stable and Fast-response Capacitive Humidity Sensors Based on a ZnO nanopowder/PVP-RGO Multilayer. Sensors. 2017, 17, 2415. DOI: 10.3390/s17102415.
  • Herran, J.; Fernandez, I.; Ochoteco, E.; Cabanero, G.; Grande, H. The Role of Water Vapour in ZnO Nanostructures for Humidity Sensing at Room Temperature. Sens. Actuators B Chem. 2014, 198, 239–242.
  • Bi, H.; Yin, K.; Xie, X.; Ji, J.; Wan, S.; Sun, L.; et al. Ultrahigh Humidity Sensitivity of Graphene Oxide. Sci. Rep. 2013, 3, 1–7.
  • Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N. Some Basic Aspects of Polymer Nanocomposites: A Critical Review. Nano Mater Sci. 2019, 1, 2–30. Doi:10.1016/j.nanoms.2019.02.006.
  • Iijima, S.;. Helical Microtubules of Graphitic Carbon. Nature. 1991, 354, 56.
  • Treacy, M. J.; Ebbesen, T.; Gibson, J. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature. 1996, 381, 678. DOI: 10.1038/381678a0.
  • Gogotsi, Y.;. Nanotubes and Nanofibers; Boca Raton: CRC press, 2006.
  • Loiseau, A.; Launois, P.; Petit, P.; Roche, S.; Salvetat, J.-P. Understanding Carbon Nanotubes. Lect. Notes Phys.. 2006, 677, 495–543.
  • Yun, Y.; Shanov, V.; Tu, Y.; Schulz, M. J.; Yarmolenko, S.; Neralla, S.; Sankar, J.; Subramaniam, S. A Multi-wall Carbon Nanotube Tower Electrochemical Actuator. Nano Lett. 2006, 6, 689–693. DOI: 10.1021/nl052435w.
  • Sayago, I.; Terrado, E.; Aleixandre, M.; Horrillo, M.; Fernández, M.; Lozano, J.; Lafuente, E.; Maser, W.K.; Benito, A.M.; Martinez, M.T.; Gutiérrez, J. Novel Selective Sensors Based on Carbon Nanotube Films for Hydrogen Detection. Sens. Actuators B Chem. 2007, 122, 75–80.
  • Wei, W.; Liu, Y.; Wei, Y.; Jiang, K.; Peng, L.-M.; Fan, S. Tip Cooling Effect and Failure Mechanism of Field-emitting Carbon Nanotubes. Nano Lett. 2007, 7, 64–68. DOI: 10.1021/nl061982u.
  • Bauhofer, W.; Kovacs, J. Z. A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites. Compos. Sci. Technol. 2009, 69, 1486–1498. DOI: 10.1016/j.compscitech.2008.06.018.
  • Tang, Q.-Y.; Chan, Y.; Zhang, K. Fast Response Resistive Humidity Sensitivity of Polyimide/multiwall Carbon Nanotube Composite Films. Sens. Actuators BChem.. 2011, 152, 99–106.
  • Durgamahanty, S. Fabrication of MWCNT Based Gas Sensor Using Site-selective Growth of Nanotubes on Gold Patterned Silicon Oxide Substrate. 2011. https://uknowledge.uky.edu/gradschool_theses/99.
  • Li, Y.; Yang, M.; Camaioni, N.; Casalbore-Miceli, G. Humidity Sensors Based on Polymer Solid Electrolytes: Investigation on the Capacitive and Resistive Devices Construction. Sens. Actuators B Chem. 2001, 77, 625–631. DOI: 10.1016/s0925-4005(01)00768-7.
  • Lu, J.; Kumar, B.; Castro, M.; Feller, J.-F. Vapour Sensing with Conductive Polymer Nanocomposites (CPC): Polycarbonate-carbon Nanotubes Transducers with Hierarchical Structure Processed by Spray Layer by Layer. Sens. Actuators B Chem. 2009, 140, 451–460. DOI: 10.1016/j.snb.2009.05.006.
  • O’Connell, M. J.; Boul, P.; Ericson, L. M.; Huffman, C.; Wang, Y.; Haroz, E.; Kuper, C.; Tour, J.; Ausman, K.D.; Smalley, R.E. Reversible Water-solubilization of Single-walled Carbon Nanotubes by Polymer Wrapping. Chem. Phys. Lett. 2001, 342, 265–271. DOI: 10.1016/S0009-2614(01)00490-0.
  • Li, J.; Fang, Z.; Tong, L.; Gu, A.; Liu, F. Improving Dispersion of Multiwalled Carbon Nanotubes in Polyamide 6 Composites through Amino‐functionalization. J. Appl. Polym. Sci. 2007, 106, 2898–2906. DOI: 10.1002/app.24599.
  • Shah, A. H.; Applications of Carbon Nanotubes and Their Polymer Nanocomposites for Gas Sensors. Carbon Nanotubes-Current Progress of their Polymer Composites. IntechOpen2016.
  • Huang, T.-H.; Chou, J.-C.; Sun, T.-P.; Hsiung, S.-K. A Device for Skin Moisture and Environment Humidity Detection. Sens. Actuators B Chem. 2008, 134, 206–212. DOI: 10.1016/j.snb.2008.04.030.
  • Tripathy, A.; Pramanik, S.; Cho, J.; Santhosh, J.; Abu Osman, N. Role of Morphological Structure, Doping, and Coating of Different Materials in the Sensing Characteristics of Humidity Sensors. Sensors. 2014, 14, 16343–16422. DOI: 10.3390/s140916343.
  • Azizian, J.; Hekmati, M.; Dadras, O. G. Functionalization of Carboxylated Multiwall Nanotubes with Dapsone Derivatives and Study of Their Antibacterial Activities against E. Coli and S. Aureus. Orient. J. Chem. 2014, 30, 667–673. DOI: 10.13005/ojc/300236.
  • Boussouari, B.; Baitoul, M. A Comparative Study of Multi-walled Carbon Nanotubes Purification Techniques. J. Mater. Sci. Eng. Adv. Technol. 2014, 9, 1–15.
  • Eren, O.; Ucar, N.; Onen, A.; Karacan, I.; Kızıldag, N.; Demirsoy, N.;, et al. Effect of Differently Functionalized Carbon Nanotubes on the Properties of Composite Nanofibres. 2016.
  • Peng, H.; Alemany, L. B.; Margrave, J. L.; Khabashesku, V. N. Sidewall Carboxylic Acid Functionalization of Single-walled Carbon Nanotubes. J. Am. Chem. Soc. 2003, 125, 15174–15182. DOI: 10.1021/ja037746s.
  • Ramanathan, T.; Fisher, F.; Ruoff, R.; Brinson, L. Amino-functionalized Carbon Nanotubes for Binding to Polymers and Biological Systems. Chem. Mater. 2005, 17, 1290–1295. DOI: 10.1021/cm048357f.
  • Du, F.; Wu, K.; Yang, Y.; Liu, L.; Gan, T.; Xie, X. Synthesis and Electrochemical Probing of Water-soluble Poly(sodium 4-styrenesulfonate-co-acrylic Acid)-grafted Multiwalled Carbon Nanotubes. Nanotechnology. 2008, 19, 085716. DOI: 10.1088/0957-4484/19/8/085716.
  • Bonifazi, D.; Nacci, C.; Marega, R.; Campidelli, S.; Ceballos, G.; Modesti, S.;, et al. Microscopic and Spectroscopic Characterization of Paintbrush-like Single-walled Carbon Nanotubes. Nano Lett. 2006, 6, 1408–1414. DOI: 10.1021/nl060394d.
  • Salipira, K.; Mamba, B.; Krause, R.; Malefetse, T.; Durbach, S. Cyclodextrin Polyurethanes Polymerised with Carbon Nanotubes for the Removal of Organic Pollutants in Water. Water Sa. 2008, 34, 113–118.
  • Avilés, F.; Cauich-Rodríguez, J.; Moo-Tah, L.; May-Pat, A.; Vargas-Coronado, R. Evaluation of Mild Acid Oxidation Treatments for MWCNT Functionalization. Carbon. 2009, 47, 2970–2975. DOI: 10.1016/j.carbon.2009.06.044.
  • Atieh, M. A.; Bakather, O. Y.; Al-Tawbini, B.; Bukhari, A. A.; Abuilaiwi, F. A.; Fettouhi, M. B. Effect of Carboxylic Functional Group Functionalized on Carbon Nanotubes Surface on the Removal of Lead from Water. Bioinorg. Chem. Appl. 2010, (2010), 603978. DOI: 10.1155/2010/603978.
  • Kuznetsova, A.; Mawhinney, D. B.; Naumenko, V.; Yates, J. T.; Liu, J. J.; Smalley, R. Enhancement of Adsorption inside of Single-walled Nanotubes: Opening the Entry Ports. Chem. Phys. Lett. 2000, 321, 292–296. DOI: 10.1016/s0009-2614(00)00341-9.
  • Grossiord, N.; Loos, J.; Regev, O.; Koning, C. E. Toolbox for Dispersing Carbon Nanotubes into Polymers to Get Conductive Nanocomposites. Chem. Mater. 2006, 18, 1089–1099. DOI: 10.1021/cm051881h.
  • Hamilton, R. F.; Xiang, J. C.; Li, M.; Ka, I.; Yang, F.; Ma, D.;, et al. Purification and Sidewall Functionalization of Multiwalled Carbon Nanotubes and Resulting Bioactivity in Two Macrophage Models. Inhalation Toxicol. 2013, 25, 199–210. DOI: 10.3109/08958378.2013.775197.
  • Zhao, Z.; Yang, Z.; Hu, Y.; Li, J.; Fan, X. Multiple Functionalization of Multi-walled Carbon Nanotubes with Carboxyl and Amino Groups. Appl. Surf. Sci. 2013, 276, 476–481. DOI: 10.1016/j.apsusc.2013.03.119.
  • Singh, B. P.; Choudhary, V.; Teotia, S.; Gupta, T. K.; Nand, V.; Singh, S. R.; Matur R. B. Solvent Free, Efficient, Industrially Viable, Fast Dispersion Process Based Amine Modified MWCNT Reinforced Epoxy Composites of Superior Mechanical Properties. Adv. Mater. Lett. 2015, 6, 104–113. DOI: 10.5185/amlett.2015.5612.
  • Schreiber, K. C.;. Infrared Spectra of Sulfones and Related Compounds. Anal. Chem. 1949, 21, 1168–1172. Schreiber, K. C. (1949). Infrared Spectra of Sulfones and Related Compounds. Analytical Chemistry, 21(10),1168–1172. doi:10.1021/ac60034a005
  • Mathur, R.; Pande, S.; Singh, B. Properties of PMMA/carbon Nanotubes Nanocomposites, Polymer Nanotube Nanocomposites: Synthesis Properties, and Applications. Wiley-Scrivener, 2010, 11, 177. doi:10.1002/9780470905647.ch7
  • Shah, K. W.; Lu, Y. Morphology, Large Scale Synthesis and Building Applications of Copper Nanomaterials. Construct. Build. Mater. 2018, 180, 544–578.
  • Tomova, A.; Gentile, G.; Grozdanov, A.; Errico, M.; Paunovic, P.; Avella, M.; Dimitrov, A. Multinanosensors Based on MWCNTs and Biopolymer Matrix—Production and Characterization. Acta Phys. Pol. A. 2017, 132(4), 1251–1255. DOI: 10.12693/APhysPolA.132.1251.
  • Athab, A.; Lafta, A.; Hussein, F. Modification of Carbon Nanotubes Surface Using Different Oxidizing Agents. J. Environ. Anal. Chem. 2015, 2, e112. Doi:10.4172/2380-2391.1000e112.
  • Ahmad, Z.; Sayyad, M.; Saleem, M.; Karimov, K. S.; Shah, M. Humidity-dependent Characteristics of Methyl-red Thin Film-based Ag/methyl-red/Ag Surface-type Cell. Phys E. 2008, 41, 18–22. DOI: 10.1016/j.physe.2008.05.018.
  • Tripathy, A.; Pramanik, S.; Manna, A.; Bhuyan, S.; Azrin Shah, N.; Radzi, Z.; Osman, N. Design and Development for Capacitive Humidity Sensor Applications of Lead-free Ca, Mg, Fe, Ti-oxides-based Electro-ceramics with Improved Sensing Properties via Physisorption. Sensors 2016, 16, 1135. DOI: 10.3390/s16071135.
  • Wang, W. C.; Tian, Y. T.; Li, K.; Lu, E. Y.; Gong, D. S.; Li, X. J. Capacitive Humidity-sensing Properties of Zn2SiO4 Film Grown on Silicon Nanoporous Pillar Array. Appl. Surf. Sci. 2013, 273, 372–376. DOI: 10.1016/j.apsusc.2013.02.045.
  • Wang, J.; Wang, X.-H.; Wang, X.-D. Study on Dielectric Properties of Humidity Sensing Nanometer Materials. Sens. Actuators B Chem. 2005, 108, 445–449. DOI: 10.1016/j.snb.2004.11.089.
  • Bi, H.; Yin, K.; Xie, X.; Ji, J.; Wan, S.; Sun, L.; Terrones, M.; Dresselhaus, M. Ultrahigh Humidity Sensitivity of Graphene Oxide. Sci. Rep. 2013, 3, 2714.
  • Guo, R.; Tang, W.; Shen, C.; Wang, X. High Sensitivity and Fast Response Graphene Oxide Capacitive Humidity Sensor with Computer-aided Design. Comput. Mater. Sci. 2016, 111, 289–293. DOI: 10.1016/j.commatsci.2015.09.032.
  • Agmon, N.;. The Grotthuss Mechanism. Chem. Phys. Lett. 1995, 244, 456–462. DOI: 10.1016/0009-2614(95)00905-J.
  • McCafferty, E.; Zettlemoyer, A. Adsorption of Water Vapour on α-Fe 2 O 3, Discussions of the Faraday Society. 1971, 52, 239–254. doi:10.1039/df9715200239
  • Seiyama, T.; Yamazoe, N.; Arai, H. Ceramic Humidity Sensors. Sens. Actuators. 1983, 4, 85–96. DOI: 10.1016/0250-6874(83)85012-4.
  • Feng, Y.; Cabezas, A. L.; Chen, Q.; Zheng, L.-R.; Zhang, Z.-B. Flexible UHF Resistive Humidity Sensors Based on Carbon Nanotubes. IEEE Sens. J. 2012, 12, 2844–2850. DOI: 10.1109/jsen.2012.2202390.
  • Du, W. Resistive, Capacitive, Inductive, and Magnetic Sensor Technologies; CRC Press, Boca Raton, 2014.
  • Braun, D. E.; Griesser, U. J. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone. Front. Chem. 2018, 6, 31. DOI: 10.3389/fchem.2018.00031.
  • Liu, H.; Wang, Q.; Sheng, W.; Wang, X.; Zhang, K.; Du, L.; Zhou, J. Humidity Sensors with Shielding Electrode under Interdigitated Electrode. Sensors. 2019, 19, 659. DOI: 10.3390/s19030659.
  • Sakai, Y.; Sadaoka, Y.; Matsuguchi, M. Humidity Sensors Based on Polymer Thin Films. Sensors and Actuators B: Chemical. 1996, 35, 85–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.