122
Views
1
CrossRef citations to date
0
Altmetric
Research Article

In situ preparation of intrinsic flame-retardant urea formaldehyde/carbon nanotubes nanocomposite foam: structure and reinforcing mechanism

, &
Pages 1640-1653 | Received 27 Jan 2020, Accepted 02 May 2020, Published online: 12 May 2020

References

  • Gama, N. V.; Ferreira, A.; Barros-Timmons, A. Polyurethane Foams: Past, Present, and Future. Materials. 2018, 11(10), 1841. DOI: 10.3390/ma11101841.
  • Dissanayake, D.; Jayasinghe, C.; Jayasinghe, M. T. R. A Comparative Embodied Energy Analysis of A House with Recycled Expanded Polystyrene (EPS) Based Foam Concrete Wall Panels. Energy Build. 2017, 135, 85–94. DOI: 10.1016/j.enbuild.2016.11.044.
  • Gong, P. J.; Wang, G. L.; Tran, M. P.; Buahom, P.; Zhai, S.; Li, G. X.; Park, C. B. Advanced Bimodal Polystyrene/multi-walled Carbon Nanotube Nanocomposite Foams for Thermal Insulation. Carbon. 2017, 120, 1–10. DOI: 10.1016/j.carbon.2017.05.029.
  • Wang, W.; Gong, W. G.; Zheng, B. C. Improving Viscoelasticity and Rebound Resilience of Crosslinked Low‐density Polyethylene Foam by Blending with Ethylene Vinyl Acetate and Polyethylene-octene Elastomer. J. Vinyl Addit. Technol. 2016, 22, 61–71. DOI: 10.1002/vnl.21427.
  • Wang, G.; Chen, X.; Liu, P. J.; Bai, S. B. Flame‐retardant Mechanism of Expandable Polystyrene Foam with a Macromolecular Nitrogen-phosphorus Intumescent Flame Retardant. J. Appl. Polym. Sci. 2017, 134, 44356. DOI: 10.1002/app.44356.
  • McKenna, S. T.; Hull, T. R. The Fire Toxicity of Polyurethane Foams. Fire Sci. Rev. 2016, 5, 3. DOI: 10.1186/s40038-016-0012-3.
  • Blais, M.; Carpenter, K. Flexible Polyurethane Foams: A Comparative Measurement of Toxic Vapors and Other Toxic Emissions in Controlled Combustion Environments of Foams with and without Fire Retardants. Fire Technol. 2015, 51, 3–18. DOI: 10.1007/s10694-013-0354-5.
  • Singh, H.; Jain, A. K. Ignition, Combustion, Toxicity, and Fire Retardancy of Polyurethane Foams: A Comprehensive Review. J. Appl. Polym. Sci. 2009, 111, 1115–1143. DOI: 10.1002/app.29131.
  • Wu, Z. G.; Lei, H.; Du, G. B.; Cao, M.; Xi, X. D.; Liang, J. K. Urea–formaldehyde Resin Prepared with Concentrated Formaldehyde. J. Adhes. Sci. Technol. 2016, 30, 2655–2666. DOI: 10.1080/01694243.2016.1193963.
  • Braun, D.; Guenther, P. Studies on the Morphological Characterization of Urea-formaldehyde-foams. J. Cell. Plast. 1985, 21, 171–177. DOI: 10.1177/0021955X8502100302.
  • Shen, Y. W.; Gu, J. Y.; Tan, H. Y.; Lv, S. S.; Zhang, Y. H. Preparation and Properties of a Polyvinyl Alcohol Toughened Urea-formaldehyde Foam for Thermal Insulation Applications. Constr. Build. Mater. 2016, 120, 104–111. DOI: 10.1016/j.conbuildmat.2016.05.096.
  • Liu, Y. L.; Ye, L.; Shu, Y.; Zhao, X. W. In Situ Preparation of Intrinsic Flame Retardant Urea Formaldehyde/aramid Fiber Composite Foam: Structure, Property and Reinforcing Mechanism. Compos. Part A Appl. Sci. Manuf. 2018, 115, 274–282. DOI: 10.1016/j.compositesa.2018.10.015.
  • Wu, B. Y.; Liu, Y. L.; Shu, Y.; Ye, L.; Zhao, X. W. Intrinsic Flame‐retardant Urea Formaldehyde/graphene Nanocomposite Foam: Structure and Reinforcing Mechanism. Polym. Compos. 2019, 40, E811–E820. DOI: 10.1002/pc.25028.
  • Gao, Y.; Li, J. Z.; Liu, L. Q.; Ma, W. J.; Zhou, W. Y.; Xie, S. S.; Zhang, Z. Axial Compression of Hierarchically Structured Carbon Nanotube Fiber Embedded in Epoxy. Adv. Funct. Mater. 2010, 20(21), 3797–3803. DOI: 10.1002/adfm.201001227.
  • Lau, K. T.; Gu, C.; Hui, D. A Critical Review on Nanotube and Nanotube/nanoclay Related Polymer Composite Materials. Compos. Part B Eng. 2006, 37, 425–436. DOI: 10.1016/j.compositesb.2006.02.020.
  • Kausar, A.;. Advances in Polymer-anchored Carbon Nanotube Foam: A Review. Polym. Plast. Technol. Mater. 2019, 58, 1965–1978. DOI: 10.1080/25740881.2019.1599945.
  • Abdehgah, R. M.; Ashouri, D.; Mousavian, S. In Situ Preparation of High Performance Polyimide Nanocomposites Based on Functionalized Multiwalled Carbon Nanotubes. Des. Monomers Polym. 2013, 16, 108–115. DOI: 10.1080/15685551.2012.705497.
  • Yaghoubi, A.; Nikje, M. M. A. Silanization of Multi-walled Carbon Nanotubes and the Study of Its Effects on the Properties of Polyurethane Rigid Foam Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2018, 109, 338–344. DOI: 10.1016/j.compositesa.2018.03.028.
  • Dolomanova, V.; Rauhe, J. C. M.; Jensen, L. R.; Pyrz, R.; Timmons, A. B. Mechanical Properties and Morphology of Nano-reinforced Rigid PU Foam. J. Cell. Plast. 2011, 47, 81–93. DOI: 10.1177/0021955X10392200.
  • Yu, D. R.; Kim, G. H. Improvement of Tensile Properties and Elastic Recovery in Ethylene Vinyl Acetate Copolymer/multiwalled Carbon Nanotube Nanocomposite Foams. J. Appl. Polym. Sci. 2011, 121, 3696–3701. DOI: 10.1002/app.34185.
  • Park, B. D.; Jeong, H. W. Hydrolytic Stability and Crystallinity of Cured Urea–formaldehyde Resin Adhesives with Different Formaldehyde/urea Mole Ratios. Int. J. Adhes. Adhes. 2011, 31, 524–529. DOI: 10.1016/j.ijadhadh.2011.05.001.
  • Szabó, T.; Berkesi, O.; Forgó, P.; Josepovits, K.; Sanakis, Y.; Petridis, D.; Dékány, I. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides. Chem. Mater. 2006, 18, 2740–2749. DOI: 10.1021/cm060258+.
  • Ţucureanu, V.; Matei, A.; Avram, A. M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. DOI: 10.1080/10408347.2016.1157013.
  • Liang, C. B.; Song, P.; Qiu, H.; Huangfu, Y. M.; Lu, Y. J.; Wang, L.; Kong, J.; Gu, J. W. Superior Electromagnetic Interference Shielding Performances of Epoxy Composites by Introducing Highly Aligned Reduced Graphene Oxide Films. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105512. DOI: 10.1016/j.compositesa.2019.105512.
  • Burgaz, E.; Kendirlioglu, C. Thermomechanical Behavior and Thermal Stability of Polyurethane Rigid Nanocomposite Foams Containing Binary Nanoparticle Mixtures. Polym. Test. 2019, 77, 105930. DOI: 10.1016/j.polymertesting.2019.105930.
  • Yang, Z. J.; Yuan, L.; Gu, Y. Z.; Li, M.; Sun, Z. J.; Zhang, Z. G. Improvement in Mechanical and Thermal Properties of Phenolic Foam Reinforced with Multiwalled Carbon Nanotubes. J. Appl. Polym. Sci. 2013, 130, 1479–1488. DOI: 10.1002/app.39326.
  • Song, S. A.; Chung, Y. S.; Kim, S. S. The Mechanical and Thermal Characteristics of Phenolic Foams Reinforced with Carbon Nanoparticles. Compos. Sci. Technol. 2014, 103, 85–93. DOI: 10.1016/j.compscitech.2014.08.013.
  • Li, Q. L.; Chen, L.; Zhang, J. J.; Zheng, K.; Zhang, X.; Fang, F.; Tian, X. Y. Enhanced Mechanical Properties, Thermal Stability of Phenolic‐formaldehyde Foam/silica Nanocomposites via in Situ Polymerization. Polym. Eng. Sci. 2015, 55, 2783–2793. DOI: 10.1002/pen.24169.
  • Zou, J.; Chen, Y.; Liang, M.; Zou, H. W. Effect of Hard Segments on the Thermal and Mechanical Properties of Water Blown Semi-rigid Polyurethane Foams. J. Polym. Res. 2015, 22, 120. DOI: 10.1007/s10965-015-0770-y.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.