488
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Preparation and characterization of gel polymer electrolyte based on PVA-K2CO3

, , , &
Pages 1679-1697 | Received 08 Jan 2020, Accepted 02 May 2020, Published online: 27 May 2020

References

  • Zhao, C.; Liu, Y.; Beirne, S.; Razal, J.; Chen, J. Recent Development of Fabricating Flexible Micro-Supercapacitors for Wearable Devices. Adv. Mater. Technol. 2018, 1800028, 1–16.
  • Javed, M. S.; Dai, S.; Wang, M.; Guo, D.; Chen, L.; Wang, X.; Hu, C.; Xi, Y. High Performance Solid State Flexible Supercapacitor Based on Molybdenum Sulfide Hierarchical Nanospheres. J. Power Sources. 2015, 285, 63–69. DOI: 10.1016/j.jpowsour.2015.03.079.
  • Zhao, B.; Lu, X.; Wang, Q.; Yang, J.; Zhao, J.; Zhou, H. Enhancing the Ionic Conductivity in a Composite Polymer Electrolyte with Ceramic Nanoparticles Anchored to Charged Polymer Brushes. Chinese Chem. Lett. 2019, 12, 1–5.
  • Li, X.; Liu, K.; Liu, Z.; Wang, Z.; Li, B.; Zhang, D. Hierarchical Porous Carbon from Hazardous Waste Oily Sludge for All-solid-state Flexible Supercapacitor. Electrochim. Acta. 2017, 240, 43–52. DOI: 10.1016/j.electacta.2017.04.061.
  • Zhang, X.; Kar, M.; Mendes, T. C.; Wu, Y.; Macfarlane, D. R. Supported Ionic Liquid Gel Membrane Electrolytes for Flexible Supercapacitors. Adv. Energy Mater. 2018, 170, 1–8.
  • Polu, A. R.; Kumar, R. Preparation and Characterization of Pva Based Solid Polymer Electrolytes for Electrochemical Cell Applications. Chin. J. Polym. Sci. 2013, 31(4), 641–648. DOI: 10.1007/s10118-013-1246-3.
  • Jung, H.; Ju, D.; Lee, W.; Zhang, X.; Kotek, R. Electrospun Hydrophilic Fumed Silica/polyacrylonitrile Nanofiber-based Composite Electrolyte Membranes. Electrochem. Acta. 2009, 54(13), 3630–3637. DOI: 10.1016/j.electacta.2009.01.039.
  • El Essawy, N. A.; Nassr, A. B. A. A.; Santos, F. Poly (Vinyl Alcohol)-based Crosslinked Ternary Polymer Blend Doped with Sulfonated Graphene Oxide as a Sustainable Composite Membrane for Direct Borohydride Fuel Cells. J. Power Sources. 2019, 432, 92–101. DOI: 10.1016/j.jpowsour.2019.05.078.
  • Ye, Y.; Rick, J.; Hwang, B. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells. Polymers. 2012, 4(2), 913–963. DOI: 10.3390/polym4020913.
  • Shukur, M. F.; Kadir, M. F. Z.; Ahmad, Z.; Ithnin, R. Transport Properties of Chitosan/Peo Blend Based Proton Conducting Polymer Electrolyte. Adv. Mater. Res. 2012, 488–489, 114–117. DOI: 10.4028/www.scientific.net/AMR.488-489.114.
  • Nishihara, M.; Terayama, Y.; Haji, T.; Lyth, S. M.; Satokawa, S.; Matsumoto, H. Proton-conductive Nano zeolite-PVA Composite Film as a New Water-absorbing Electrolyte for Water Electrolysis. Express Polym. Lett. 2018, 12(3), 256–264. DOI: 10.3144/expresspolymlett.2018.23.
  • Wu, G. M.; Lin, S. J.; Yang, C. C. Preparation and Characterization of PVA/PAA Membranes for Solid Polymer Electrolytes Preparation and Characterization of PVA/PAA Membranes for Solid Polymer Electrolytes. J. Membr. Sci. 2006, 275(1–2), 127–133. DOI: 10.1016/j.memsci.2005.09.012.
  • Çavuş, S.; Durgun, E. Poly (Vinyl Alcohol) Based Polymer Gel Electrolytes: Investigation on Their Conductivity and Characterization. Acta Phys. Pol. A. 2016, 129(4), 621–624. DOI: 10.12693/APhysPolA.129.621.
  • Choudhury, N. A.; Ma, J.; Sahai, Y. High Performance and Eco-friendly Chitosan Hydrogel Membrane Electrolytes for Direct Borohydride Fuel Cells. J. Power Sources. 2012, 210, 358–365. DOI: 10.1016/j.jpowsour.2012.03.013.
  • Hema, M.; Selvasekarapandian, S.; Arunkumar, D.; Sakunthala, A.; Nithya, H. FTIR, XRD and Ac Impedance Spectroscopic Study on PVA Based Polymer Electrolyte Doped with NH4X (X = Cl, Br, I). J. Non. Cryst. Solids. 2009, 355, 84–90. DOI: 10.1016/j.jnoncrysol.2008.10.009.
  • Chodankar, N. R.; Dubal, D. P.; Lokhande, A. C.; Lokhande, C. D. Ionically Conducting PVA–LiClO4 Gel Electrolyte for High Performance Flexible Solid State Supercapacitors. J. Colloid Interface Sci. 2015, 460, 370–376. DOI: 10.1016/j.jcis.2015.08.046.
  • Fan, L.; Wang, M.; Zhang, Z.; Qin, G.; Hu, X.; Chen, Q. Preparation and Characterization of PVA Alkaline Solid Polymer Electrolyte with Addition of Bamboo Charcoal. Materials. 2018, 11(5), 679. DOI: 10.3390/ma11050679.
  • Shukur, M. F.; Ithnin, R.; Sonsudin, F.; Yahya, R.; Ahmad, Z.; Kadir, M. F. Z. Conduction Mechanism and Dielectric Properties of Solid Biopolymer Electrolyte Incorporated with Silver Nitrate. Adv. Mater. Res. 2013, 701, 115–119. DOI: 10.4028/www.scientific.net/AMR.701.115.
  • Yusof, Y. M.; Illias, H. A.; Shukur, M. F.; Kadir, M. F. Z. Characterization of Starch-chitosan Blend-based Electrolyte Doped with Ammonium Iodide for Application in Proton Batteries. Ionics. 2017, 23(3), 681–697. DOI: 10.1007/s11581-016-1856-1.
  • Kadir, M. F. Z.; Majid, S. R.; Arof, A. K. Plasticized chitosan–PVA Blend Polymer Electrolyte Based Proton Battery. Electrochim. Acta. 2010, 55(4), 1475–1482. DOI: 10.1016/j.electacta.2009.05.011.
  • Patachia, S.; Rinja, M.; Isac, L. Some Methods for Doping Poly (Vinyl Alcohol) Hydrogels [Pva-hg]. Rom. Journ. Phys. 2006, 51, 253–262.
  • Aziz, S. B.; Woo, T. J.; Kadir, M. F. Z.; Ahmed, H. M. A Conceptual Review on Polymer Electrolytes and Ion Transport Models. J. Sci. Adv. Mater. Devices. 2018, 3, 1–17. DOI: 10.1016/j.jsamd.2018.01.002.
  • Long, L.; Wang, S.; Xiao, M.; Meng, Y. Polymer Electrolytes for Lithium Polymer Batteries. J. Mater. Chem. A Mater. Energy Sustain. 2016, 4(26), 10038–10069. DOI: 10.1039/C6TA02621D.
  • An, Q.; Li, F.; Ji, Y.; Chen, H. Influence of Polyvinyl Alcohol on the Surface Morphology, Separation and Anti-fouling Performance of the Composite Polyamide Nanofiltration Membranes. J. Memb. Sci. 2011, 367(1–2), 158–165. DOI: 10.1016/j.memsci.2010.10.060.
  • Capacitors, D.; Wang, J.; Zhao, Z.; Song, S.; Ma, Q.; Liu, R. High Performance Poly(vinyl alcohol)-Based Li-Ion Conducting Gel Polymer Electrolyte Films for Electric Double-Layer Capacitors. Polymers. 2018, 18, 1179.
  • Nguyen, N.; Liu, J. Fabrication and Characterization of Poly(vinyl Alcohol)/chitosan Hydrogel Thin Films via UV Irradiation. Eur. Polym. J. 2013, 49(12), 4201–4211. DOI: 10.1016/j.eurpolymj.2013.09.032.
  • Na, R.; Lu, N.; Zhang, S.; Huo, G.; Yang, Y.; Zhang, C.; Mu, Y.; Luo, Y.; Wang, G. Facile Synthesis of a High-performance, Fire-retardant Organic Gel Polymer Electrolyte for Flexible Solid-state Supercapacitors. Electrochim. Acta. 2018, 290, 262–272. DOI: 10.1016/j.electacta.2018.09.074.
  • Choo, K.; Ching, Y. C.; Chuah, C. H.; Julai, S.; Liou, N. Preparation and Characterization of Polyvinyl Alcohol-Chitosan Composite Films Reinforced with Cellulose Nanofiber. Materials. 2016, 9(8), 1–16. DOI: 10.3390/ma9080644.
  • Yusof, Y. M.; Shukur, M. F.; Illias, H. A.; Kadir, M. F. Z. Conductivity and Electrical Properties of Corn Starch-chitosan Blend Biopolymer Electrolyte Incorporated with Ammonium Iodide. Phys. Scr. 2014, 89(3), 1–11. DOI: 10.1088/0031-8949/89/03/035701.
  • Liew, C.; Ramesh, S.; Arof, A. K. Characterization of Ionic Liquid Added Poly (Vinyl Alcohol)-based Proton Conducting Polymer Electrolytes and Electrochemical Studies on the Supercapacitors. Int. J. Hydrogen Energy. 2014, 40(1), 852–862. DOI: 10.1016/j.ijhydene.2014.09.160.
  • Liew, C.; Ramesh, S.; Arof, A. K. A Novel Approach on Ionic Liquid-based Poly (Vinyl Alcohol) Proton Conductive Polymer Electrolytes for Fuel Cell Applications. Int. J. Hydrogen Energy. 2013, 39(6), 2917–2928. DOI: 10.1016/j.ijhydene.2013.07.092.
  • Kadir, M. F. Z.; Hamsan, M. H. Green Electrolytes Based on Dextran-chitosan Blend and the Effect of NH4SCN as Proton Provider on the Electrical Response Studies. Ionics. 2017, 10, 581.
  • Dodda, J. M.; Belsky, P.; Chmelar, J.; Remis, T.; Smolna, K.; Tomas, M.; Kullova, L.; Kadlec, J. Comparative Study of PVA/SiO2 and PVA/SiO2/glutaraldehyde (GA) Nanocomposite Membranes Prepared by Single-step Solution Casting Method. J. Mater. Sci. 2015, 10, 1–14.
  • Hassanjani, A.; Abdollah, R.; Safura, O. Determination of Degradation Kinetics of Polyvinyl alcohol/X-zeolite Nanocomposite. J. Therm. Anal. Calorim. 2016, 10, 1–10.
  • Liew, C.; Ramesh, S.; Arof, A. K. Good Prospect of Ionic Liquid Based-poly (Vinyl Alcohol) Polymer Electrolytes for Supercapacitors with Excellent Electrical, Electrochemical and Thermal Properties. Int. J. Hydrogen Energy. 2013, 39, 2953–2963. DOI: 10.1016/j.ijhydene.2013.06.061.
  • Aziz, S. B.; Brza, M. A.; Mohamed, P. A.; Kadir, M. F. Z.; Hamsan, M. H.; Abdulwahid, R. T.; Woo, H. J. Increase of Metallic Silver Nanoparticles in Chitosan: AgNt Based Polymer Electrolytes Incorporated with Alumina Filler. Results Phys. 2019, 13, 102326. DOI: 10.1016/j.rinp.2019.102326.
  • He, T.; Jia, R.; Lang, X.; Wu, X.; Wang, Y. Preparation and Electrochemical Performance of PVdF Ultrafine Porous Fiber Separator-Cum-Electrolyte for Supercapacitor. J. Electrochem. Soc. 2017, 164, 379–384. DOI: 10.1149/2.0631713jes.
  • González, A.; Goikolea, E.; Andoni, J.; Mysyk, R. Review on Supercapacitors: Technologies and Materials. Renewable Sustainable Energy Rev. 2016, 58, 1189–1206. DOI: 10.1016/j.rser.2015.12.249.
  • Mishra, K.; Garg, A.; Sharma, R.; Gautam, R.; Pundir, S. S. Effect of Blending of PMMA on PVdF-HFP + NaCF3SO3-EC-PC Gel Polymer Electrolyte. Mater. Today Proc. 2019, 12, 621–627. DOI: 10.1016/j.matpr.2019.03.106.
  • Chen, L.; Fu, J.; Lu, Q.; Shi, L.; Li, M.; Dong, L.; Xu, Y.; Jia, R. Cross-linked Polymeric Ionic Liquids Ion Gel Electrolytes by in Situ Radical Polymerization. Chem. Eng. J. 2019, 378, 122245. DOI: 10.1016/j.cej.2019.122245.
  • Hyeon, S.; Yong, J.; Wook, J.; Kim, W.; Chung, C. Faradaic Reaction of Dual-redox Additive in Zwitterionic Gel Electrolyte Boosts the Performance of Fl Exible Supercapacitors. Electrochim. Acta. 2019, 319, 672–681. DOI: 10.1016/j.electacta.2019.07.043.
  • Qiao, J.; Fu, J.; Lin, R.; Ma, J.; Liu, J. Alkaline Solid Polymer Electrolyte Membranes Based on Structurally Modi Fi Ed PVA/PVP with Improved Alkali Stability. Polymer. 2010, 51, 4850–4859.
  • Shukur, M. F.; Ithnin, R.; Illias, H. A.; Kadir, M. F. Z. Proton Conducting Polymer Electrolyte Based on Plasticized chitosan-PEO Blend and Application in Electrochemical Devices. Opt. Mater. (Amst). 2013, 35, 1834–1841. DOI: 10.1016/j.optmat.2013.03.004.
  • Wang, X.; Hao, X.; Xia, Y.; Liang, Y.; Xia, X.; Tu, J. A Polyacrylonitrile (Pan)-based Double-layer Multifunctional Gel Polymer Electrolyte for Lithium-sulfur Batteries. J. Memb. Sci. 2019, 582, 37–47. DOI: 10.1016/j.memsci.2019.03.048.
  • Yang, H.; Liu, Y.; Kong, L.; Kang, L.; Ran, F. Biopolymer-based Carboxylated Chitosan Hydrogel Fi Lm Crosslinked by HCl as Gel Polymer Electrolyte for All-solid-sate Supercapacitors. J. Power Sources. 2019, 426, 47–54. DOI: 10.1016/j.jpowsour.2019.04.023.
  • Aziz, S. B.; Abdullah, O. G.; Rasheed, M. A.; Ahmed, H. M. Effect of High Salt Concentration (HSC) on Structural, Morphological, and Electrical Characteristics of Chitosan Based Solid Polymer Electrolytes. Polymers. 2017, 9(12), 187. DOI: 10.3390/polym9060187.
  • Sudha, L. K.; Roy, S.; Rao, K. U. Evaluation of Activation Energy (Ea) Profiles of Nanostructured Alumina Polycarbonate Composite Insulation Materials. Int. J. Mater. Mech. Manuf. 2014, 2, 1–5.
  • Shukur, M. F.; Ithnin, R.; Kadir, M. F. Z. Electrical Properties of Proton Conducting Solid Biopolymer Electrolytes Based on Starch–Chitosan Blend. Ionics. 2014, 20, 977–999. DOI: 10.1007/s11581-013-1033-8.
  • Aziz, S. B.; Abidin, Z. H. Z.; Arof, A. K. Effect of Silver Nanoparticles on the DC Conductivity in Chitosan–Silver Triflate Polymer Electrolyte. Phys. B Phys. Condens. Matter. 2010, 405, 4429–4433. DOI: 10.1016/j.physb.2010.08.008.
  • Ramesh, S.; Liew, C.; Ramesh, K. Evaluation and Investigation on the Effect of Ionic Liquid onto PMMA-PVC Gel Polymer Blend Electrolytes. J. Non. Cryst. Solids. 2011, 357, 2132–2138. DOI: 10.1016/j.jnoncrysol.2011.03.004.
  • Philipsen, H.; Monnens, W. Immersion and Electrochemical Deposition of Ru on Si. Electrochim. Acta. 2018, 274, 306–315. DOI: 10.1016/j.electacta.2018.04.093.
  • Liang, S.; Yan, W.; Wu, X.; Zhang, Y.; Zhu, Y.; Wang, H. Gel Polymer Electrolytes for Lithium Ion Batteries: Fabrication, Characterization and Performance. Solid State Ionics. 2018, 318, 2–18. DOI: 10.1016/j.ssi.2017.12.023.
  • Arof, A. K.; Kufian, M. Z.; Syukur, M. F.; Aziz, M. F.; Abdelrahman, A. E.; Majid, S. R. Electrical Double Layer Capacitor Using Poly (Methyl Methacrylate)-C4BO8 Li Gel Polymer Electrolyte and Carbonaceous Material from Shells of Mata Kucing (Dimocarpus Longan) Fruit. Electrochim. Acta. 2012, 74, 39–45. DOI: 10.1016/j.electacta.2012.03.171.
  • Samsudin, A. S.; Lai, H. M.; Isa, M. I. N. Biopolymer Materials Based Carboxymethyl Cellulose as a Proton Conducting Biopolymer Electrolyte for Application in Rechargeable Proton Battery. Electrochim. Acta. 2014, 129, 1–13. DOI: 10.1016/j.electacta.2014.02.074.
  • Shuhaimi, N. E. A.; Majid, S. R.; Arof, A. K.; Shuhaimi, N. E. A.; Majid, S. R.; Arof, A. K. On Complexation between Methyl Cellulose and Ammonium Nitrate on Complexation between Methyl Cellulose and Ammonium Nitrate. Mater. Res. Innovations. 2016, 13, 239–242. DOI: 10.1179/143307509X440406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.