102
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Rapid crystallization of poly(ethylene 2,6-naphthalate) via aryl amide derivatives

, , &
Pages 1842-1853 | Received 03 Mar 2020, Accepted 10 May 2020, Published online: 27 May 2020

References

  • Aoki, Y. ; Li, L. ; Amari, T. ; Nishimura, K. ; Arashiro, Y. Dynamic Mechanical Properties of Poly (Ethylene Terephthalate)/poly (Ethylene 2, 6-naphthalate) Blends. Macromolecules . 1999, 32(6), 1923–1929. DOI: 10.1021/ma981657w.
  • Gutiérrez, M. G. ; Rueda, D. R. ; Calleja, F. B. ; Stribeck, N. ; Bayer, R. Nanostructure of Atmospheric and High-pressure Crystallised Poly (Ethylene-2, 6-naphthalate. J. Mater. Sci. 2001, 36, 5739–5746. DOI: 10.1023/a:1012931416958.
  • Kim, J. Y. ; Han, S. I. ; Kim, D. K. ; Kim, S. H. Mechanical Reinforcement and Crystallization Behavior of Poly (Ethylene 2, 6-naphthalate) Nanocomposites Induced by Modified Carbon Nanotube. Compos. Part A Appl. Sci. Manuf. 2009, 40(1), 45–53. DOI: 10.1016/j.compositesa.2008.10.002.
  • Kuźniak, M. ; Broerman, B. ; Pollmann, T. ; Araujo, G. Polyethylene Naphthalate Film as a Wavelength Shifter in Liquid Argon Detectors. European Phys J C . 2019, 79(4), 291. DOI: 10.1140/epjc/s10052-019-6810-8.
  • Nakamae, K. ; Nishino, T. ; Tada, K. ; Kanamoto, T. ; Ito, M. Elastic Modulus of the Crystalline Regions of Poly (Ethylene-2, 6-naphthalate). Polymer . 1993, 34, 3322–3324. DOI: 10.1016/0032-3861(93)90411-3.
  • Nam, J. Y. ; Fukuoka, M. ; Saito, H. ; Inoue, T. Light Scattering Studies on the Crystalline Morphology of Stretched Poly (Ethylene 2, 6-naphthalate) Film. Polymer . 2007, 48(8), 2395–2403. DOI: 10.1016/j.polymer.2007.02.051.
  • Yin, J. ; Luo, F. ; Wang, D. ; Sun, X. Effect of Small Molecule Organics on the Crystallization Behavior and Mechanical Properties of Poly (Ethylene 2, 6-naphthalate). Eur. Polym. J. 2019, 114, 66–71. DOI: 10.1016/j.eurpolymj.2019.02.011.
  • Blagoev, B. ; Aleksandrova, M. ; Terziyska, P. ; Tzvetkov, P. ; Kovacheva, D. ; Kolev, G. ; Mehandzhiev, V. ; Denishev, K. ; Dimitrov, D. Investigation of the Structural, Optical and Piezoelectric Properties of ALD ZnO Films on PEN Substrates. In 20th International Summer School on Vacuum, Electron and Ion Technologies Conference, Sozopol, Bulgaria, 25–29 September 2017; Journal of Physics: Conference Series, IOP Publishing. 2018; 012027. DOI: 10.1088/1742-6596/992/1/012027.
  • Mishra, A. K. ;. Nanophotonics of Derivatives of PEN for High Efficiency OLED: A Theoretical Study. Mater. Today Proc. 2018, 5, 9138–9143. DOI: 10.1016/j.matpr.2017.10.033.
  • Semerádtová, A. ; Štofik, M. ; Neděla, O. ; Staněk, O. ; Slepička, P. ; Kolská, Z. ; Malý, J. A Simple Approach for Fabrication of Optical Affinity-based Bioanalytical Microsystem on Polymeric PEN Foils. Colloids Surf. B . 2018, 165, 28–36. DOI: 10.1016/j.colsurfb.2018.01.048.
  • Shabannia, R. ;. High-sensitivity UV Photodetector Based on Oblique and Vertical Co-doped ZnO Nanorods. Mater. Lett. 2018, 214, 254–256. DOI: 10.1016/j.matlet.2017.12.019.
  • Tran, D.-P. ; Lu, H.-I. ; Lin, C.-K. Conductive Characteristics of Indium Tin Oxide Thin Film on Polymeric Substrate under Long-term Static Deformation. Coatings . 2018, 8(6), 212. DOI: 10.3390/coatings8060212.
  • Anand, K. A. ; Agarwal, U. ; Joseph, R. Carbon Nanotubes Induced Crystallization of Poly(ethylene Terephthalate). Polymer . 2006, 47(11), 3976–3980. DOI: 10.1016/j.polymer.2006.03.079.
  • Chae, D. W. ; Kim, B. C. Thermal and Rheological Properties of Highly Concentrated PET Composites with Ferrite Nanoparticles. Compos. Sci. Technol. 2007, 67(7–8), 1348–1352. DOI: 10.1016/j.compscitech.2006.09.018.
  • Chuai, C. Z. ; In, L. K. Study on Crystallization and Rheological Behavior of PEN/PET Blends. Adv. Mater. Res. 2014, 72–75, Trans Tech Publ. DOI: 10.4028/www.scientific.net/amr.830.72.
  • Jung, D. E. ; Hahm, W. G. ; Kikutani, T. ; Kim, B. C. Structural Factor of Nanoparticles in the Stress-induced Crystallization of Poly (Ethylene Terephthalate). Compos. Sci. Technol. 2018, 165, 314–321. DOI: 10.1016/j.compscitech.2018.07.020.
  • Espinoza‐Martínez, A. B. ; Ávila‐Orta, C. A. ; Cruz‐Delgado, V. J. ; Medellín‐Rodríguez, F. J. ; Bueno‐Baqués, D. ; Mata‐Padilla, J. M. Effect of MWNTs Concentration and Cooling Rate on the Morphological, Structural, and Electrical Properties of Non‐isothermally Crystallized PEN/MWNT Nanocomposites. J. Appl. Polym. Sci. 2015, 132(14). DOI: 10.1002/app.41765.
  • Kim, J. Y. ; Han, S. I. ; Kim, S. H. Crystallization Behaviors and Mechanical Properties of Poly (Ethylene 2, 6‐naphthalate)/multiwall Carbon Nanotube Nanocomposites. Polym. Eng. Sci. 2007, 47(47), 1715–1723. DOI: 10.1002/pen.20789.
  • Kim, S. H. ; Ahn, S. H. ; Hirai, T. Crystallization Kinetics and Nucleation Activity of Silica Nanoparticle-filled Poly (Ethylene 2, 6-naphthalate). Polymer . 2003, 44, 5625–5634. DOI: 10.1016/S0032-3861(03)00623-2.
  • Li, G. ; Shi, Y. ; Fan, S. ; Yu, X. Non-isothermal Melt Crystallization Kinetics for Poly (Ethylene 2, 6‐naphthalate)(PEN)/Montmorillonite Nanocomposites Prepared by Melt Intercalation. J. Macromol. Sci., Part B: Phys. 2007, 46(6), 1231–1245. DOI: 10.1080/00222340701629356.
  • Wu, T. M. ; Liu, C. Y. Effect of Thermal History on the Polymorphic Behavior of Poly (Ethylene 2, 6‐Naphthalate)/Clay Nanocomposites. J. Macromol. Sci.Part B . 2004, 43(6), 1171–1182. DOI: 10.1081/MB-200027681.
  • Wu, T.-M. ; Liu, C.-Y. Poly (Ethylene 2, 6-naphthalate)/layered Silicate Nanocomposites: Fabrication, Crystallization Behavior and Properties. Polymer . 2005, 46(15), 5621–5629. DOI: 10.1016/j.polymer.2005.04.071.
  • Zabihi, O. ;. Characterization and Thermal Decomposition Kinetics of Poly (Ethylene 2, 6-naphthalate) Nanocomposites Reinforced with TiO2 Nanoparticles. Polym.-Plast. Technol. Eng. 2012, 51, 43–49. DOI: 10.1080/03602559.2011.617402.
  • Zheng, L. J. ; Qi, J. G. ; Zhang, Q. H. ; Zhou, W. F. ; Liu, D. Crystal Morphology and Isothermal Crystallization Kinetics of Short Carbon Fiber/poly (Ethylene 2, 6‐naphthalate) Composites. J. Appl. Polym. Sci. 2008, 108, 650–658. DOI: 10.1002/app.27653.
  • Gao, X. ; Liu, R. ; Zhang, J. ; Zhang, J. Crystallization Behaviors of Poly (Ethylene 2, 6-naphthalate) in the Presence of Liquid Crystalline Polymer. Ind. Eng. Chem. Res. 2008, 47, 2590–2596. DOI: 10.1021/ie061668a.
  • Xia, G. ; Jin, M. ; Haishan, B. Influence of Nucleating Agent on the Crystallization Behavior of Poly (Ethylene 2, 6-naphthalate). Acta Polymerica Sinica . 2002, 35, 717–722. DOI: 10.1021/ma021160t.
  • Dong, M. ; Guo, Z. ; Yu, J. ; Su, Z. Crystallization Behavior and Morphological Development of Isotactic Polypropylene with an Aryl Amide Derivative as β‐form Nucleating Agent. J. Polym. Sci. B Polym. Phys. 2008, 46(16), 1725–1733. DOI: 10.1002/polb.21508.
  • Dong, M. ; Guo, Z. X. ; Yu, J. ; Su, Z. Q. Study of the Assembled Morphology of Aryl Amide Derivative and Its Influence on the Nonisothermal Crystallizations of Isotactic Polypropylene. J. Polym. Sci. B Polym. Phys. 2009, 47(3), 314–325. DOI: 10.1002/polb.21642.
  • Han, R. ; Nie, M. ; Wang, Q. ; Yan, S. Self-assembly β Nucleating Agent Induced Polymorphic Transition from α-form Shish Kebab to β-form Highly Ordered Lamella under Intense Shear Field. Ind. Eng. Chem. Res. 2017, 56(10), 2764–2772. DOI: 10.1021/acs.iecr.6b04908.
  • Li, Y. ; Wen, X. ; Nie, M. ; Wang, Q. Controllable Reinforcement of Stiffness and Toughness of Polypropylene via Thermally Induced Self‐assembly of β‐nucleating Agent. J. Appl. Polym. Sci. 2014, 131. DOI: 10.1002/app.40605.
  • Nam, J. Y. ; Okamoto, M. ; Okamoto, H. ; Nakano, M. ; Usuki, A. ; Matsuda, M. Morphology and Crystallization Kinetics in a Mixture of Low-molecular Weight Aliphatic Amide and Polylactide. Polymer . 2006, 47(4), 1340–1347. DOI: 10.1016/j.polymer.2005.12.066.
  • Shen, Z. ; Luo, F. ; Xing, Q. ; Si, P. ; Lei, X. ; Ji, L. ; Ding, S. ; Wang, K. Effect of an Aryl Amide Derivative on the Crystallization Behaviour and Impact Toughness of Poly(ethylene Terephthalate). CrystEngComm . 2016, 18(12), 2135–2143. DOI: 10.1039/c6ce00114a.
  • Cheng, S. Z. ; Wunderlich, B. Glass Transition and Melting Behavior of Poly (Ethylene 2, 6-naphthalenedicarboxylate). Macromolecules . 1988, 21(3), 789–797. DOI: 10.1021/ma00181a040.
  • Banks, W. ; Gordon, M. ; Sharples, A. The Crystallization of Polyethylene after Partial Melting. Polymer . 1963, 4, 289–302. DOI: 10.1016/0032-3861(63)90037-5.
  • Blundell, D. ; Keller, A. ; Kovacs, A. A New Self‐nucleation Phenomenon and Its Application to the Growing of Polymer Crystals from Solution. J. Polymer Sci. Part B: Polymer Letters . 1966, 4(7), 481–486. DOI: 10.1002/pol.1966.110040709.
  • Fillon, B. ; Lotz, B. ; Thierry, A. ; Wittmann, J. Self‐nucleation and Enhanced Nucleation of Polymers. Definition of a Convenient Calorimetric “Efficiency Scale” and Evaluation of Nucleating Additives in Isotactic Polypropylene (α Phase). J. Polym. Sci. B Polym. Phys. 1993, 31(10), 1395–1405. DOI: 10.1002/polb.1993.090311014.
  • Avrami, M. ;. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 1939, 7(12), 1103–1112. DOI: 10.1063/1.1750380.
  • Avrami, M. ;. Kinetics of Phase Change. II Transformation‐time Relations for Random Distribution of Nuclei. J. Chem. Phys. 1940, 8(2), 212–224. DOI: 10.1063/1.1750631.
  • Avrami, M. ;. Kinetics of Phase Change. III: Granulation, Phase Change and Microstructure. J. Chem. Phys. 1941, 9(2), 177–184. DOI: 10.1063/1.1750872.
  • Dou, J. ; Liu, Z. Crystallization Behavior of Poly(ethylene Terephthalate)/pyrrolidinium Ionic Liquid. Polym. Int. 2013, 62(12), 1698–1710. DOI: 10.1002/pi.4470.
  • Kuo, S.-W. ; Chan, S.-C. ; Chang, F.-C. Effect of Hydrogen Bonding Strength on the Microstructure and Crystallization Behavior of Crystalline Polymer Blends. Macromolecules . 2003, 36(17), 6653–6661. DOI: 10.1021/ma034695a.
  • Hoffman, J. D. ; Davis, G. T. ; Lauritzen, J. I. The Rate of Crystallization of Linear Polymers with Chain Folding. Treatise solid state Chem. . Springer. 1976, 497–614. DOI: 10.1007/978-1-4684-2664-9_7.
  • Chan, T. ; Isayev, A. Quiescent Polymer Crystallization: Modelling and Measurements. Polym. Eng. Sci. 1994, 34(6), 461–471. DOI: 10.1002/pen.760340602.
  • Han, S. I. ; Kang, S. W. ; Kim, B. S. ; Im, S. S. A Novel Polymeric Ionomer as A Potential Biomaterial: Crystallization Behavior, Degradation, and In‐Vitro Cellular Interactions. Adv. Funct. Mater. 2005, 15(3), 367–374. DOI: 10.1002/adfm.200400079.
  • Lee, W. D. ; Yoo, E. S. ; Im, S. S. Crystallization Behavior and Morphology of Poly (Ethylene 2, 6-naphthalate). Polymer . 2003, 44(21), 6617–6625. DOI: 10.1016/j.polymer.2003.08.002.
  • Park, J. W. ; Kim, D. K. ; Im, S. S. Crystallization Behaviour of Poly(butylene Succinate) Copolymers. Polym. Int. 2002, 51(3), 239–244. DOI: 10.1002/pi.848.
  • Si, P. ; Luo, F. Hydrogen Bonding Interaction and Crystallization Behavior of Poly (Butylene Succinate‐co‐butylene Adipate)/thiodiphenol Complexes. Polym. Adv. Technol. 2016, 27(11), 1413–1421. DOI: 10.1002/pat.3809.
  • Hoffman, J. D. ; Weeks, J. J. Rate of Spherulitic Crystallization with Chain Folds in Polychlorotrifluoroethylene. J. Chem. Phys. 1962, 37(8), 1723–1741. DOI: 10.1063/1.1733363.
  • Buchner, S. ; Wiswe, D. ; Zachmann, H. Kinetics of Crystallization and Melting Behaviour of Poly (Ethylene Naphthalene-2, 6-dicarboxylate). Polymer . 1989, 30(3), 480–488. DOI: 10.1016/0032-3861(89)90018-9.
  • Lauritzen, J. I., Jr ; Hoffman, J. D. Extension of Theory of Growth of Chain‐folded Polymer Crystals to Large Undercoolings. J. Appl. Phys. 1973, 44, 4340–4352. DOI: 10.1063/1.1661962.
  • Daubeny, R. D. P. ; Bunn, C. W. ; Brown, C. The Crystal Structure of Polyethylene Terephthalate. Proceed Royal Soc. London. Series A. Mathematical Phys. Sci. . 1954, 226, 531–542. DOI: 10.1098/rspa.1954.0273.
  • Xing, P. ; Ai, X. ; Dong, L. ; Feng, Z. Miscibility and Crystallization of Poly (β-hydroxybutyrate)/poly (Vinyl Acetate-co-vinyl Alcohol) Blends. Macromolecules . 1998, 31, 6898–6907. DOI: 10.1021/ma960615+.
  • Lauritzen, J. I., Jr ; Hoffman, J. D. Formation of Polymer Crystals with Folded Chains from Dilute Solution. J. Chem. Phys. 1959, 31(6), 1680–1681. DOI: 10.1063/1.1730678.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.