159
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Influence of modified mesoporous silica SBA-15 and compatibilizer on the properties and structure of ethylene-vinyl acetate copolymer-based nanocomposites

ORCID Icon, , &
Pages 2003-2017 | Received 28 Feb 2020, Accepted 15 Jun 2020, Published online: 30 Jun 2020

References

  • Salimian, S.; Zadhoush, A.; Mohammadi, A. A Review on New Mesostructured Composite Materials: Part I. Synthesis of Polymer-Mesoporous Silica Nanocomposite. J. Reinf. Plast. Compos. 2018, 37(7), 441–459. DOI: 10.1177/0731684417752081.
  • Wang, B.; Wang, X.; Shi, Y.; Tang, G.; Tang, Q.; Song, L.; Hu, Y. Effect of Vinyl Acetate Content and Electron Beam Irradiation on the Flame Retardancy, Mechanical and Thermal Properties of Intumescent Flame Retardant Ethylene-Vinyl Acetate Copolymer. Radiat. Phys. Chem. 2012, 81(3), 308–315. DOI: 10.1016/j.radphyschem.2011.10.021.
  • Tian, Y.; Yu, H.; Wu, S.; Ji, G.; Shen, J. Study on the Structure and Properties of EVA/Clay Nanocomposites. J. Mater. Sci. 2004, 39(13), 4301–4303. DOI: 10.1023/B:JMSC.0000033412.92494.ee.
  • Kim, S.; Drzal, L. T. Comparison of Exfoliated Graphite Nanoplatelets (Xgnp) and CNTs for Reinforcement of EVA Nanocomposites Fabricated by Solution Compounding Method and Three Screw Rotating Systems. J. Adhes. Sci. Technol. 2009, 23(12), 1623–1638. DOI: 10.1163/156856109X440984.
  • Chaudhary, D. S.; Prasad, R.; Gupta, R. K.; Bhattacharya, S. N. Morphological Influence on Mechanical Characterization of Ethylene-Vinyl Acetate Copolymer-Clay Nanocomposites. Polym. Eng. Sci. 2005, 45(7), 889–897. DOI: 10.1002/pen.20349.
  • Bidsorkhi, H. C.; Soheilmoghaddam, M.; Pour, R. H.; Adelnia, H.; Mohamad, Z. Mechanical, Thermal and Flammability Properties of Ethylene-Vinyl Acetate (Eva)/sepiolite Nanocomposites. Polym. Test. 2014, 37, 117–122. DOI: 10.1016/j.polymertesting.2014.05.007.
  • Miltner, H. E.; Peeterbroeck, S.; Viville, P.; Dubois, P.; Van Mele, B. Interfacial Interaction in EVA-Carbon Nanotube and EVA-Clay Nanocomposites. J. Polym. Sci. B Polym. Phys. 2007, 45(11), 1291–1302. DOI: 10.1002/polb.21193.
  • Wang, L.; Jiang, P. K. Thermal and Flame Retardant Properties of Ethylene-Vinyl Acetate Copolymer/Modified Multiwalled Carbon Nanotube Composites. J. Appl. Polym. Sci. 2011, 119(5), 2974–2983. DOI: 10.1002/app.33028.
  • Osman, A. F.; Kalo, H.; Hassan, M. S.; Hong, T. W.; Azmi, F. Pre-Dispersing of Montmorillonite Nanofiller: Impact on Morphology and Performance of Melt Compounded Ethyl Vinyl Acetate Nanocomposites. J. Appl. Polym. Sci. 2016, 133(11), 43204. DOI: 10.1002/app.43204.
  • Zou, H.; Wu, S.; Shen, J. Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chem. Rev. 2008, 108(9), 3893–3957. DOI: 10.1021/cr068035q.
  • Sadeghi, M.; Khanbabaei, G.; Dehaghani, A. H. S.; Sadeghi, M.; Aravand, M. A.; Akbarzade, M.; Khatti, S. Gas Permeation Properties of Ethylene Vinyl Acetate–Silica Nanocomposite Membranes. J. Membr. Sci. 2008, 322(2), 423–428. DOI: 10.1016/j.memsci.2008.05.077.
  • Cassagnau, P.;. Payne Effect and Shear Elasticity of Silica-Filled Polymers in Concentrated Solutions and in Molten State. Polymer. 2003, 44(8), 2455–2462. DOI: 10.1016/S0032-3861(03)00094-6.
  • Tham, D. Q.; Tuan, V. M.; Thanh, D. T. M.; Chinh, N. T.; Giang, N. V.; Trang, N. T. T.; Hang, T. T. X.; Huong, H. T.; Dung, N. T. K.; Hoang, T. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid. J. Nanosci. Nanotechnol. 2015, 15(4), 2777–2784. DOI: 10.1166/jnn.2015.9209.
  • Hoang, T.; Truc, T. A.; Thanh, D. T. M.; Chinh, N. T.; Tham, D. Q.; Trang, N. T. T.; Vu Giang, N.; Lam, V. D. Tensile, Rheological Properties, Thermal Stability, and Morphology of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites Using EVA-g-Maleic Anhydride. J. Compos. Mater. 2014, 48(4), 505–511. DOI: 10.1177/0021998313476319.
  • Choi, M.; Kleitz, F.; Liu, D.; Lee, H. Y.; Ahn, W.-S.; Ryoo, R. Controlled Polymerization in Mesoporous Silica toward the Design of Organic−Inorganic Composite Nanoporous Materials. J. Am. Chem. Soc. 2005, 127(6), 1924–1932. DOI: 10.1021/ja044907z.
  • Ariga, K.; Vinu, A.; Yamauchi, Y.; Ji, Q.; Hill, J. P. Nanoarchitectonics for Mesoporous Materials. BCSJ. 2012, 85(1), 1–32. DOI: 10.1246/bcsj.20110162.
  • Zhao, D.;. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998, 279(5350), 548–552. DOI: 10.1126/science.279.5350.548.
  • Galarneau, A.; Cambon, H.; Di Renzo, F.; Ryoo, R.; Choi, M.; Fajula, F. Microporosity and Connections between Pores in SBA-15 Mesostructured Silicas as a Function of the Temperature of Synthesis. New J. Chem. 2003, 27(1), 73–79. DOI: 10.1039/b207378c.
  • Cao, L.; Chi, H.; Hao, Y.; Wang, J. Preparation of Mesoporous SBA-15/Polymer-copper(II) Composites in Supercritical CO2 and Their Multiple Applications. Polym. Compos. 2019, 40(2), 823–831. DOI: 10.1002/pc.24741.
  • Meléndez-Ortiz, H. I.; Puente-Urbina, B.; Castruita-de Leon, G.; Mata-Padilla, J. M.; García-Uriostegui, L. Synthesis of Spherical SBA-15 Mesoporous Silica. Influence of Reaction Conditions on the Structural Order and Stability. Ceram. Int. 2016, 42(6), 7564–7570. DOI: 10.1016/j.ceramint.2016.01.163.
  • De Fátima, V.; Marques, M.; da Silva, O. F. C.; Coutinho, A. C. S. L. S.; de Araujo, A. S. Ethylene Polymerization Catalyzed by Metallocene Supported on Mesoporous Materials. Polym. Bull. 2008, 61(4), 415–423. DOI: 10.1007/s00289-008-0965-z.
  • Huirache-Acuña, R.; Nava, R.; Peza-Ledesma, C.; Lara-Romero, J.; Alonso-Núez, G.; Pawelec, B.; Rivera-Muñoz, E. SBA-15 Mesoporous Silica as Catalytic Support for Hydrodesulfurization Catalysts—Review. Materials. 2013, 6(9), 4139–4167. DOI: 10.3390/ma6094139.
  • Wang, H.; Zhang, S. F.; Liu, J. W.; Ouyang, L. Z.; Zhu, M. Enhanced Dehydrogenation of Nanoscale MgH2 Confined by Ordered Mesoporous Silica. Mater. Chem. Phys. 2012, 136(1), 146–150. DOI: 10.1016/j.matchemphys.2012.06.044.
  • Lin, J.; Wang, X. Preparation, Microstructure, and Properties of Novel low-κ Brominated Epoxy/mesoporous Silica Composites. Eur. Polym. J. 2008, 44(5), 1414–1427. DOI: 10.1016/j.eurpolymj.2008.02.022.
  • Wei, L.; Hu, N.; Zhang, Y. Synthesis of Polymer—Mesoporous Silica Nanocomposites. Materials. 2010, 3(7), 4066–4079. DOI: 10.3390/ma3074066.
  • Zhang, F.-A.; Song, C.; Yu, C.-L. Effects of Preparation Methods on the Property of PMMA/SBA-15 Mesoporous Silica Composites. J. Polym. Res. 2011, 18(6), 1757–1764. DOI: 10.1007/s10965-011-9582-x.
  • Min, C.-K.; Wu, T.-B.; Yang,w W.-T.; Chen, C.-L. Functionalized Mesoporous Silica/Polyimide Nanocomposite Thin Films with Improved Mechanical Properties and Low Dielectric Constant. Compos. Sci. Technol. 2008, 68(6), 1570–1578. DOI: 10.1016/j.compscitech.2007.09.021.
  • Zhang, F.-A.; Lee, D.-K.; Pinnavaia, T. J. PMMA/Mesoporous Silica Nanocomposites: Effect of Framework Structure and Pore Size on Thermomechanical Properties. Polym. Chem. 2010, 1(1), 107–113. DOI: 10.1039/B9PY00232D.
  • Yu, C. B.; Wei, C.; Lv, J.; Liu, H. X.; Meng, L. T. Preparation and Thermal Properties of Mesoporous Silica/Phenolic Resin Nanocomposites via in Situ Polymerization. Express Polym. Lett. 2012, 6(10), 783–793. DOI: 10.3144/expresspolymlett.2012.84.
  • Lu, Y.; Lin, Q.; Ren, W.; Zhang, Y. Investigation on the Preparation and Properties of Low-Dielectric Ethylene-Vinyl Acetate Rubber/Mesoporous Silica Composites. J. Polym. Res. 2015, 22(4), 56. DOI: 10.1007/s10965-015-0694-6.
  • Qian, Y.; Li, S.; Chen, X. Preparation of Mesoporous Silica-LDHs System and Its Coordinated Flame-Retardant Effect on EVA. J. Therm. Anal. Calorim. 2017, 130(3), 2055–2067. DOI: 10.1007/s10973-017-6508-9.
  • Uotila, R.; Hippi, U.; Paavola, S.; Seppälä, J. Compatibilization of PP/Elastomer/Microsilica Composites with Functionalized Polyolefins: Effect on Microstructure and Mechanical Properties. Polymer. 2005, 46(19), 7923–7930. DOI: 10.1016/j.polymer.2005.06.099.
  • Cumkur, E. A.; Baouz, T.; Yilmazer, U. Poly(Lactic Acid)-Layered Silicate Nanocomposites: The Effects of Modifier and Compatibilizer on the Morphology and Mechanical Properties. J. Appl. Polym. Sci. 2015, 132(38), n/a-n/a. DOI: 10.1002/app.42553.
  • Guerba, H.; Djellouli, B.; Petit, C.; Pitchon, V. CO Oxidation Catalyzed by Ag/SBA-15 Catalysts: Influence of the Hydrothermal Treatment. C. R. Chim. 2014, 17(7–8), 775–784. DOI: 10.1016/j.crci.2013.09.001.
  • Scapini, P.; Figueroa, C. A.; Amorim, C. L.; Machado, G.; Mauler, R. S.; Crespo, J. S.; Oliveira, R. V. Thermal and Morphological Properties of High-Density Polyethylene/Ethylene-Vinyl Acetate Copolymer Composites with Polyhedral Oligomeric Silsesquioxane Nanostructure. Polym. Int. 2009, n/a-n/a. DOI: 10.1002/pi.2704.
  • Xu, L.; Wang, L.; Shen, Y.; Ding, Y.; Cai, Z. Preparation of Hexadecyltrimethoxysilane-Modified Silica Nanocomposite Hydrosol and Superhydrophobic Cotton Coating. Fibers Polym. 2015, 16(5), 1082–1091. DOI: 10.1007/s12221-015-1082-x.
  • Kaci, M.; Kaid, N.; Boukerrou, A. Influence of Ethylene-Butyl Acrylate-Glycidyl Methacrylate Terpolymer on Compatibility of Ethylene Vinyl Acetate Copolymer/Olive Husk Flour Composites. Compos. Interfaces. 2011, 18(4), 295–307. DOI: 10.1163/092764411X584487.
  • Nagarajan, V.; Mohanty, A. K.; Misra, M. Blends of Polylactic Acid with Thermoplastic Copolyester Elastomer: Effect of Functionalized Terpolymer Type on Reactive Toughening. Polym. Eng. Sci. 2018, 58(3), 280–290. DOI: 10.1002/pen.24566.
  • Gaidukovs, S.; Zukulis, E.; Bochkov, I.; Vaivodiss, R.; Gaidukova, G. Enhanced Mechanical, Conductivity, and Dielectric Characteristics of Ethylene Vinyl Acetate Copolymer Composite Filled with Carbon Nanotubes. J. Thermoplast. Compos. Mater. 2018, 31(9), 1161–1180. DOI: 10.1177/0892705717734603.
  • Adelnia, H.; Bidsorkhi, H. C.; Ismail, A. F.; Matsuura, T. Gas Permeability and Permselectivity Properties of Ethylene Vinyl Acetate/Sepiolite Mixed Matrix Membranes. Sep. Purif. Technol. 2015, 146, 351–357. DOI: 10.1016/j.seppur.2015.03.060.
  • Wang, N.; Zhang, J.; Fang, Q.; Hui, D. Influence of Mesoporous Fillers with PP-g-MA on Flammability and Tensile Behavior of Polypropylene Composites. Compos. B Eng. 2013, 44(1), 467–471. DOI: 10.1016/j.compositesb.2012.04.006.
  • Watanabe, R.; Hagihara, H.; Sato, H. Structure−property Relationships of Polypropylene-Based Nanocomposites Obtained by Dispersing Mesoporous Silica into Hydroxyl-Functionalized Polypropylene. Part 2: Matrix−filler Interactions and Pore Filling of Mesoporous Silica Characterized by Evolved Gas Analysis. Polym. J. 2018, 50(11), 1067–1077. DOI: 10.1038/s41428-018-0096-9.
  • Wang, N.; Gao, N.; Fang, Q.; Chen, E. Compatibilizing Effect of Mesoporous Fillers on the Mechanical Properties and Morphology of Polypropylene and Polystyrene Blend. Mater. Des. 2011, 32(3), 1222–1228. DOI: 10.1016/j.matdes.2010.10.012.
  • Wang, N.; Gao, N.; Jiang, S.; Fang, Q.; Chen, E. Effect of Different Structure MCM-41 Fillers with PP-g-MA on Mechanical and Crystallization Performances of Polypropylene. Compos. B Eng. 2011, 42(6), 1571–1577. DOI: 10.1016/j.compositesb.2011.04.012.
  • Buchdahl, R.;. Mechanical Properties of Polymers and Composites – Vols. I And II, Lawrence E. Nielsen, Marcel Dekker, Inc., New York, 1974, Vol. I 255 Pp. Vol. II 301 Pp. Vol. I $24.50, Vol. II $28.75. J. Polym. Sci. 1975, 13(2), 120–121. DOI: 10.1002/pol.1975.130130214.
  • Bikiaris, D. N.; Vassiliou, A.; Pavlidou, E.; Karayannidis, G. P. Compatibilisation Effect of PP-g-MA Copolymer on IPP/SiO2 Nanocomposites Prepared by Melt Mixing. Eur. Polym. J. 2005, 41(9), 1965–1978. DOI: 10.1016/j.eurpolymj.2005.03.008.
  • Jlassi, K.; Chandran, S.; Poothanari, M. A.; Benna-Zayani, M.; Thomas, S.; Chehimi, M. M. Clay/Polyaniline Hybrid through Diazonium Chemistry: Conductive Nanofiller with Unusual Effects on Interfacial Properties of Epoxy Nanocomposites. Langmuir. 2016, 32(14), 3514–3524. DOI: 10.1021/acs.langmuir.5b04457.
  • Zoukrami, F.; Haddaoui, N.; Sclavons, M.; Devaux, J.; Vanzeveren, C. Rheological Properties and Thermal Stability of Compatibilized Polypropylene/Untreated Silica Composites Prepared by Water Injection Extrusion Process. Polym. Bull. 2018, 75(12), 5551–5566. DOI: 10.1007/s00289-018-2344-8.
  • Gupta, R. K.; Pasanovic-Zujo, V.; Bhattacharya, S. N. Shear and Extensional Rheology of EVA/Layered Silicate-Nanocomposites. J. Non-Newtonian Fluid Mech. 2005, 128(2–3), 116–125. DOI: 10.1016/j.jnnfm.2005.05.002.
  • Run, M. T.; Wu, S. Z.; Zhang, D. Y.; Wu, G. A Polymer/Mesoporous Molecular Sieve Composite: Preparation, Structure and Properties. Mater. Chem. Phys. 2007, 105(2–3), 341–347. DOI: 10.1016/j.matchemphys.2007.04.070.
  • Costache, M. C.; Jiang, D. D.; Wilkie, C. A. Thermal Degradation of Ethylene–Vinyl Acetate Copolymer Nanocomposites. Polymer. 2005, 46(18), 6947–6958. DOI: 10.1016/j.polymer.2005.05.084.
  • Badiee, A.; Ashcroft, I. A.; Wildman, R. D. The Thermo-Mechanical Degradation of Ethylene Vinyl Acetate Used as a Solar Panel Adhesive and Encapsulant. Int. J. Adhes. Adhes. 2016, 68, 212–218. DOI: 10.1016/j.ijadhadh.2016.03.008.
  • Yao, B.; Zhang, X.; Yang, F.; Li, C.; Sun, G.; Zhang, G.; Mu, Z. Morphology-Controlled Synthesis of Polymethylsilsesquioxane (PMSQ) Microsphere and Its Applications in Enhancing the Thermal Properties and Flow Improving Ability of Ethylene-Vinyl Acetate Copolymer. Powder Technol. 2018, 329, 137–148. DOI: 10.1016/j.powtec.2018.01.074.
  • Dutta, S. K.; Bhowmick, A. K.; Mukunda, P. G.; Chaki, T. K. Thermal Degradation Studies of Electron Beam Cured Ethylene-Vinyl Acetate Copolymer. Polym. Degrad. Stab. 1995, 50(1), 75–82. DOI: 10.1016/0141-3910(95)00125-6.
  • Zanetti, M.;. Synthesis and Thermal Behaviour of Layered Silicate–EVA Nanocomposites. Polymer. 2001, 42(10), 4501–4507. DOI: 10.1016/S0032-3861(00)00775-8.
  • Zanetti, M.; Kashiwagi, T.; Falqui, L.; Camino, G. Cone Calorimeter Combustion and Gasification Studies of Polymer Layered Silicate Nanocomposites. Chem. Mater. 2002, 14(2), 881–887. DOI: 10.1021/cm011236k.
  • Barranco-García, R.; Gómez-Elvira, J. M.; Ressia, J. A.; Quinzani, L.; Vallés, E. M.; Pérez, E.; Cerrada, M. L. Variation of Ultimate Properties in Extruded IPP-Mesoporous Silica Nanocomposites by Effect of IPP Confinement within the Mesostructures. Polymers. 2020, 12(1), 70. DOI: 10.3390/polym12010070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.