246
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Design and fabrication of conductive composite films with high elasticity and strength using hybrid polymer matrix

, , , &
Pages 195-207 | Received 19 Apr 2020, Accepted 04 Jul 2020, Published online: 14 Jul 2020

References

  • Qiu, K.; Elhassan, A.; Tian, T.; Yin, X.; Yu, J.; Li, Z.; Ding, B. Highly Flexible, Efficient, and Sandwich-structured Infrared Radiation Heating Fabric. ACS Appl. Mater. Interfaces. 2020, 12, 11016–11025.
  • Ma, T.; Zhao, Y.; Ruan, K.; Liu, X.; Zhang, J.; Guo, Y.; Yang, X.; Kong, J.; Gu, J. Highly Thermal Conductivities, Excellent Mechanical Robustness and Flexibility, and Outstanding Thermal Stabilities of Aramid Nanofiber Composite Papers with Nacre-mimetic Layered Structures. ACS Appl. Mater. Interfaces. 2020, 12, 1677–1686. DOI: 10.1021/acsami.9b19844.
  • Wu, G.; Chen, Y.; Zhan, H.; Chen, H. T.; Lin, J. H.; Wang, J. N.; Wan, L. Q.; Huang, F. R. Ultrathin and Flexible Carbon Nanotube/Polymer Composite Films with Excellent Mechanical Strength and Electromagnetic Interference Shielding. Carbon. 2020, 158, 472–480. DOI: 10.1016/j.carbon.2019.11.014.
  • Tong, R.; Chen, G.; Tian, J.; He, M. Highly Stretchable, Strain-sensitive, and Ionic-conductive Cellulose-based Hydrogels for Wearable Sensors. Polymers. 2019, 11, 2067–2076. DOI: 10.3390/polym11122067.
  • Kaur, G.; Adhikari, R.; Cass, P.; Bown, M.; Gunatillake, P. Electrically Conductive Polymers and Composites for Biomedical Applications. RSC Adv. 2015, 5, 37553–37567. DOI: 10.1039/C5RA01851J.
  • Wang, Y.; Yu, H.; Lu, G.; Luo, Z.; Shao, N.; Cao, M.; Wang, B. Influence of Structural Modification on the Properties of Poly(amide–imide)s. Polym. Polym. Compos. 2020, 28(1), 26–34.
  • Duan, G.; Liu, S.; Jiang, S.; Hou, H. High-performance Polyamide-imide Films and Electrospun Aligned Nanofibers from an Amide-containing Diamine. J. Mater. Sci. 2019, 54(3), 6719–6727. DOI: 10.1007/s10853-019-03326-w.
  • Fang, Y.; Wang, Y.; Li, Y.; Yu, H.; Zhuang, C.; Luo, Z.; Fan, Z.; Wang, B. Conductivity Enhancement of Poly(amide-imide) Composites Based on the Synergistic Effect of Poly(o-methoxyaniline) and Functionalized Multiwalled Carbon Nanotube. Polym. Polym. Compos. 2020. DOI: 10.1177/0967391120930970.
  • Cao, M.; Luo, Z.; Yang, Y.; Wang, Y.; Wang, B. In Situ Polymerized Poly(amide Imide)/multiwalled Carbon Nanotube Composite: Structural, Mechanical, and Electrical Studies. Polym.-Plast. Technol. 2017, 56(13), 1391–1400. DOI: 10.1080/03602559.2016.1275689.
  • Dodda, J. M.; Belsky, P. Progress in Designing Poly(amide Imide)s (PAI) in Terms of Chemical Structure, Preparation Methods and Processability. Eur. Polym. J. 2016, 84, 514–537. DOI: 10.1016/j.eurpolymj.2016.09.043.
  • Shi, Q.; Tian, K.; Zhu, H.; Li, Z.-R.; Zhu, L.-G.; Deng, H.; Huang, W.; Fu, Q. Flexible and Giant Terahertz Modulation Based on Ultra-strain-sensitive Conductive Polymer Composites. ACS Appl. Mater. Interfaces. 2020, 12, 9790–9796. DOI: 10.1021/acsami.9b21890.
  • Gao, Y.; Guo, F.; Cao, P.; Liu, J.; Li, D.; Wu, J.; Wang, N.; Su, Y.; Zhao, Y. Winding-locked Carbon Nanotubes/polymer Nanofibers Helical Yarn for Ultrastretchable Conductor and Strain Sensor. ACS Nano. 2020, 14, 3442–3450. DOI: 10.1021/acsnano.9b09533.
  • Zhou, H.; Wang, X.; Wang, T.; Jian, J.; Zhou, Z.; Zeng, J.; Zeng, L.; Liu, G. Polyurethane Synthetic Papers Based on Different Inorganic Fillers with Water and Fire Resistance. Macromol. Mater. Eng. 2018, 304(3), 1800473–1800480. DOI: 10.1002/mame.201800473.
  • Tian, K.; Pan, Q.; Deng, H.; Fu, Q. Shear Induced Formation and Destruction Behavior of Conductive Networks in Nickel/Polyurethane Composites during Strain Sensing. Compos. Part A. 2020, 130, 105757–105767. DOI: 10.1016/j.compositesa.2019.105757.
  • Arlas, B. F.; Khan, U.; Rueda, L.; Coleman, J. N.; Mondragon, I.; Corcuera, M. A.; Eceiza, A. Influence of Hard Segment Content and Nature on Polyurethane/multiwalled Carbon Nanotube Composites. Compos. Sci. Technol. 2011, 71, 1030–1038. DOI: 10.1016/j.compscitech.2011.02.006.
  • Zhan, C.; Yu, G.; Lu, Y.; Wang, L.; Wujcik, F.; Wei, S. Conductive Polymer Nanocomposites: A Critical Review of Modern Advanced Devices. J. Mater. Chem. C. 2017, 5, 1569–1585. DOI: 10.1039/C6TC04269D.
  • Wang, Y.; Chen, J.; Shen, Y.; Wang, T.; Ni, Y.; Zhang, Z.; Sun, L.; Ji, B.; Wang, B. Control of Conductive and Mechanical Performances of Poly(amide-imide) Composite Films Utilizing Synergistic Effect of Polyaniline and Multi-walled Carbon Nanotube. Polym. Eng. Sci. 2019, 59(S2), E224–E230. DOI: 10.1002/pen.25032.
  • Xu, W.; Ding, Y.; Yu, Y.; Jiang, S.; Chen, L.; Hou, H. Highly Foldable PANi@CNTs/PU Dielectric Composites toward Thin-film Capacitor Application. Mater. Lett. 2017, 192, 25–28. DOI: 10.1016/j.matlet.2017.01.064.
  • Taban, N.; Sharif, M.; Taghvaei, M. Study on the Structure and Properties of Poly(methylmethacrylate)/polypyrrole-graphene Oxide Nanocomposites. Polym.-Plast. Technol. 2019, 58(11), 1157–1169.
  • Wang, Y.; Wang, T.; Wang, T.; Zhang, J.; Chen, J.; Yang, R.; Ruan, L.; Wang, B. Facile Preparation of Multifunctional Poly(amide-imide)/Polyaniline Films: Combining Self-cleaning, Self-extinguishing, and Conductive. Polym. Eng. Sci. 2019, 59(S1), E33–E43. DOI: 10.1002/pen.24839.
  • Song, P.-N.; Hong, J.-H. Highly-stretchable, Self-healable Random Copolymers for Loading Large Amounts of Multiwall Carbon Nanotubes (Mwcnts) for the Preparation of Stretchable and Healable Electric Sensors. J. Mater. Chem. C. 2019, 7, 13161–13175. DOI: 10.1039/C9TC03735G.
  • Arjmand, M.; Ameli, A.; Sundararaj, U. Employing Nitrogen Doping as Innovative Technique to Improve Broadband Dielectric Properties of Carbon Nanotube/Polymer Nanocomposites[J]. Macromol. Mater. Eng. 2016, 301(5), 555–565. DOI: 10.1002/mame.201500365.
  • Faghihi, K.; Hemati, F.; Mirzakhanian, Z.; Shabanian, M. Synthesis of New PI/MWCNT Containing Sulfone Groups via in Situ Polymerization: Study on Thermal, Electrical, and Optical Properties. Int. J. Polym. Mater. 2015, 64(8), 406–410. DOI: 10.1080/00914037.2014.958828.
  • He, G.; Zhou, J.; Tan, K.; Li, H. Preparation, Morphology and Properties of Acylchloride-grafted Multiwall Carbon Nanotubes/fluorinated Polyimide Composites. Compos. Sci. Technol. 2011, 71(16), 1914–1920. DOI: 10.1016/j.compscitech.2011.09.006.
  • Imran, S. M.; Kim, Y. A.; Choa, Y.-H.; Hussain, M.; Yang, K. S. Pressure-sensitive Polymer Nanocomposites: Carbon Nanofiber-reinforced MWCNT-coated PMMA Microbeads. Polym.-Plast. Technol. 2019, 58(16), 1793–1801.
  • Imran, S. M.; Salman, A.; Shao, G. N.; Haider, M. S.; Abbas, N.; Park, S.; Hussain, M.; Kim, H. T. Study of the Electroconductive Properties of Conductive Polymers Graphene/graphene Oxide Nanocomposites Synthesized via in Situ Emulsion Polymerization. Polym. Compos. 2018, 39, 2142–2150. DOI: 10.1002/pc.24179.
  • Sivaraman, P.; Thakur, A. P.; Shashidhara, K. Poly(3-methyl Thiophene)-graphene Nanocomposites for Asymmetric Supercapacitors. Synth. Met. 2020, 259, 116255–116264. DOI: 10.1016/j.synthmet.2019.116255.
  • Adak, B.; Joshi, M.; Butola, B. S. Polyurethane/Functionalized-graphene Nanocomposite Films with Enhanced Weather Resistance and Gas Barrier Properties. Compos. Part B. 2019, 176, 107303–107314. DOI: 10.1016/j.compositesb.2019.107303.
  • Bansala, T.; Joshi, M.; Mukhopadhyay, S.; Doong, R.-A.; Chaudhary, M. Electrically Conducting Graphene-based Polyurethane Nanocomposites for Microwave Shielding Applications in the Ku Band. J. Mater. Sci. 2017, 52(3), 1546–1560. DOI: 10.1007/s10853-016-0449-8.
  • Nguyen, D. A.; Raghu, A. V.; Choi, J. T.; Jeong, H. M. Properties of Thermoplastic Polyurethane/functionalised Graphene Sheet Nanocomposites Prepared by the in Situ Polymerisation Method. Polym. Polym. Compos. 2010, 18(7), 351–358.
  • Wang, Y.; Yu, H.; Li, Y.; Wang, T.; Xu, T.; Chen, J.; Fan, Z.; Wang, Y.; Wang, B. Facile Preparation of Highly Conductive Poly(amide-imide) Composite Films beyond 1000 S/m through Ternary Blend Strategy. Polymers. 2019, 11(3), 546–558. DOI: 10.3390/polym11030546.
  • Zhang, A.; Wang, L.; Lin, Y.; Mi, X. Carbon Black Filled Powdered Natural Rubber: Preparation, Particle Size Distribution, Mechanical Properties, and Structures. J. Appl. Polym. Sci. 2006, 101(3), 1763–1774. DOI: 10.1002/app.23516.
  • Huang, J.-C.;. Carbon Black Filled Conducting Polymers and Polymer Blends. Adv. Polym. Tech. 2002, 21(4), 299–313. DOI: 10.1002/adv.10025.
  • Zhang, Q.; Wang, J.; Zhang, B.-Y.; Guo, B.-H.; Yu, J.; Guo, Z.-X. Improved Electrical Conductivity of Polymer/Carbon Black Composites by Simultaneous Dispersion and Interaction-induced Network Assembly. Compos. Sci. Technol. 2019, 179, 106–114. DOI: 10.1016/j.compscitech.2019.05.008.
  • Wen, S.; Chung, D. D. L. Effects of Carbon Black on the Thermal, Mechanical and Electrical Properties of Pitch-matrix Composites. Carbon. 2004, 42, 2393–2397. DOI: 10.1016/j.carbon.2004.04.005.
  • Xiao, Y.-J.; Wang, W.-Y.; Chen, X.-J.; Lin, T.; Zhang, Y.-T.; Yang, J.-H.; Wang, Y.; Zhou, Z.-W. Hybrid Network Structure and Thermal Conductive Properties in Poly (Vinylidene Fluoride) Composites Based on Carbon Nanotubes and Graphene Nanoplatelets. Compos. Part A. 2016, 90, 614–625. DOI: 10.1016/j.compositesa.2016.08.029.
  • Wu, J.-K.; Ye, -C.-C.; Liu, T.; An, Q.-F.; Song, Y.-H.; Lee, K.-R.; Hung, W.-S.; Gao, C.-J. Synergistic Effects of CNT and GO on Enhancing Mechanical Properties and Separation Performance of Polyelectrolyte Complex Membranes. Mater. Des. 2017, 119, 38–46. DOI: 10.1016/j.matdes.2017.01.056.
  • Ju, J.; Kuang, T.; Ke, X.; Zeng, M.; Chen, Z.; Zhang, S.; Peng, X. Lightweight Multifunctional Polypropylene/Carbon Nanotubes/Carbon Black Nanocomposite Foams with Segregated Structure, Ultralow Percolation Threshold and Enhanced Electromagnetic Interference Shielding Performance. Compos. Sci. Technol. 2020, 193, 108116. DOI: 10.1016/j.compscitech.2020.108116.
  • Pokharel, P.; Xiao, D.; Erogbogbo, F.; Keles, O.; Lee, D. S. A Hierarchical Approach for Creating Electrically Conductive Network Structure in Polyurethane Nanocomposites Using A Hybrid of Graphene Nanoplatelets, Carbon Black and Multi-walled Carbon Nanotubes. Compos. Part B. 2019, 161, 169–182. DOI: 10.1016/j.compositesb.2018.10.057.
  • Duan, J.; Shao, S.; Li, Y.; Wang, L.; Jiang, P.; Liu, B. Polylactide/Graphite Nanosheets/MWCNTs Nanocomposites with Enhanced Mechanical, Thermal and Electrical Properties. Iran. Polym. J. 2012, 21(2), 109–120. DOI: 10.1007/s13726-011-0008-8.
  • Liu, H.; Gao, J.; Huang, W.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers. Nanoscale. 2016, 8(26), 12977–12989. DOI: 10.1039/C6NR02216B.
  • Ma, Z.; Wei, A.; Ma, J.; Shao, L.; Jiang, H.; Dong, D.; Ji, Z.; Wang, Q.; Kang, S. Lightweight, Compressible and Electrically Conductive Polyurethane Sponges Coated with Synergistic Multiwalled Carbon Nanotubes and Graphene for Piezoresistive Sensors. Nanoscale. 2018, 10(15), 7116–7126. DOI: 10.1039/C8NR00004B.
  • Verma, M.; Chauhan, S. S.; Dhawan, S. K.; Choudhary, V. Graphene Nanoplatelets/Carbon Nanotubes/Polyurethane Composites as Efficient Shield against Electromagnetic Polluting Radiations. Compos. Part B. 2017, 120, 118–127. DOI: 10.1016/j.compositesb.2017.03.068.
  • Im, H.; Kim, J. Thermal Conductivity of a Graphene Oxide-carbon Nanotube Hybrid/Epoxy Composite. Carbon. 2012, 50(15), 5429–5440. DOI: 10.1016/j.carbon.2012.07.029.
  • Kim, J.-Y.; Kim, T. Y.; Suk, J. W.; Chou, H.; Jang, J.-H.; Lee, J. H.; Kholmanov, I. N.; Akinwande, D.; Ruoff, R. S. Enhanced Dielectric Performance in Polymer Composite Films with Carbon Nanotube-reduced Graphene Oxide Hybrid Filler. Small. 2014, 10(16), 3405–3411. DOI: 10.1002/smll.201400363.
  • Luo, Z.; Cai, Z.; Wang, Y.; Wang, Y.; Wang, B. In Situ Growth of Silver Nanowires on the Reduced Graphene Oxide Sheets for Transparent Electrically Conductive Films. RSC Adv. 2016, 6(43), 37124–37129. DOI: 10.1039/C6RA01421F.
  • Wang, Y.; Lu, G.; Wang, W.; Cao, M.; Luo, Z.; Shao, N.; Wang, B. Molecular Design and Synthesis of Thermotropic Liquid Crystalline Poly(amide Imide)s with High Thermal Stability and Solubility. e-Polymers. 2017, 17, 199–207. DOI: 10.1515/epoly-2016-0288.
  • Yang, C.-P.; Su, -Y.-Y. Synthesis and Properties of Soluble and Light-colored Poly(amide-imide-imide)s Based on Tetraimide-dicarboxylic Acid (TIDA) and Various Aromatic Diamines: TIDA from 4,4′-oxydiphthalic Anhydride, 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene, and 3-aminobenzoic Acid. Eur. Polym. J. 2005, 41(2), 249–258.
  • Kobayashi, Y.; Fujiwara, Y.; Kitaoka, T.; Oishi, Y.; Shibasaki, Y. Synthesis of Highly Transparent Poly(amide-imide)s Based on Trimellitic Acid and Dependence of Thermal Properties on Monomer Sequence. React. Funct. Polym. 2016, 108, 78–85. DOI: 10.1016/j.reactfunctpolym.2016.04.016.
  • Cheng, J.; Wang, S.; Chen, S.; Zhang, J.; Wang, X. Properties and Crystallization Behavior of Poly (Vinylidene Fluoride) (PVDF)/thermoplastic Polyurethane Elastomer (TPU) Blends. Desalin. Water Treat. 2011, 34(1–3), 184–189. DOI: 10.5004/dwt.2011.2791.
  • Ranade, A.; D’Souza, N. A.; Gnade, B. Exfoliated and Intercalated Polyamide-imide Nanocomposites with Montmorillonite. Polymer. 2002, 43(13), 3759–3766. DOI: 10.1016/S0032-3861(02)00106-4.
  • Haponiuk, J. T.;. Phase Transitions of Polyamide 6/polyurethane Blends Compatibilized by Copolyurethaneamides. J. Therm. Anal. Calorim. 2012, 60(1), 45–52. DOI: 10.1023/A:1010112216245.
  • Szabo, T.; Berkesi, O.; Dekany, I. Drift Study of Deuterium-exchanged Graphite Oxide. Carbon. 2005, 43(15), 3186–3189. DOI: 10.1016/j.carbon.2005.07.013.
  • Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of Graphene-based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon. 2007, 45, 1558–1565. DOI: 10.1016/j.carbon.2007.02.034.
  • Kong, Q.; Luo, Z.; Wang, Y.; Wang, B. Fabrication of Super-stretchable and Electrical Conductive Membrane of Spandex/Multi-wall Carbon Nanotube/Reduced Graphene Oxide Composite. J. Polym. Res. 2018, 25, 231–238. DOI: 10.1007/s10965-018-1597-0.
  • Hacivelioglu, F.; Kilic, N.; Celebi, E. B.; Yesilot, S. In Situ Preparation and Properties of Sulfonic and Phosphonic Acid Substituted Polyphosphazene/polyaniline Composites. Polymer. 2016, 96, 112–120. DOI: 10.1016/j.polymer.2016.05.008.
  • Zhang, H.; Zhang, G.; Tang, M.; Zhou, L.; Li, J.; Fan, X.; Shi, X.; Qin, J. Synergistic Effect of Carbon Nanotube and Graphene Nanoplates on the Mechanical, Electrical and Electromagnetic Interference Shielding Properties of Polymer Composites and Polymer Composite Foams. Chem. Eng. J. 2018, 353, 381–393. DOI: 10.1016/j.cej.2018.07.144.
  • Mallakpour, S.; Zadehnazari, A. Preparation of Dopamine-functionalized Multi-wall Carbon Nanotube/poly(amide-imide) Composites and Their Thermal and Mechanical Properties. New Carbon Mater. 2016, 31(1), 18–30. DOI: 10.1016/S1872-5805(16)60001-X.
  • Van Krevelen, D. W.;. Some Basic Aspects of Flame Resistance of Polymeric Materials. Polymer. 1975, 16, 615–620. DOI: 10.1016/0032-3861(75)90157-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.